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Recap of last lecture
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• We introduced the linear regression model, which is a parametric model, for solving the regression problem

• Now we will look at basic parametric modelling techniques, particularly

• Linear regression (covered in last lecture)

• Logistic regression

• Linear regression
• A loss-based perspective, using least squares error

• A statistical perspective based on maximum likelihood, where the log-likelihood function was used

• A closed form solution was derived

• One-hot encoding to handle categorical inputs 

• We will see that in logistic regression, we will not obtain a closed form solution



How to handle categorical input variables?
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 We had mentioned earlier that input variables 𝐱𝐱 can be numerical, catergorical, or mixed

 Assume that an input variable is categorical and takes only two classes, say A and B

 We can represent such an input variable 𝑥𝑥 using 1 and 0 

 For linear regression, the model effectively looks like

𝑦𝑦 = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥 + 𝜖𝜖 = �𝜃𝜃0 + 𝜖𝜖, if 𝐀𝐀
𝜃𝜃0 + 𝜃𝜃1 + 𝜖𝜖, if 𝐁𝐁

 If the input is a categorical variable with more than two classes, let’s say A, B, C, and D, use one-hot encoding

𝑥𝑥 =  �0,  if 𝐀𝐀
1,  if 𝐁𝐁

𝐱𝐱 =

1
0
0
0

 if A, 𝐱𝐱 =

0
1
0
0

 if B,    𝐱𝐱 =

0
0
1
0

 if C, 𝐱𝐱 =

0
0
0
1

 if D 



A statistical view of the Classification problem

 Classification → learn relationships between some input variables 𝐱𝐱 = 𝑥𝑥1 𝑥𝑥2 … 𝑥𝑥𝑝𝑝 𝑇𝑇 and a categorical output 𝑦𝑦

 The goal in classification is to take an input vector 𝐱𝐱 and to assign it to one of 𝑀𝑀 discrete classes 1,2 … ,𝑀𝑀

 From a statistical perspective, classification amounts to predicting the conditional class probabilities

𝑝𝑝 𝑦𝑦 = 𝑚𝑚 𝐱𝐱 𝑦𝑦 → 1, 2, … ,𝑀𝑀

 𝑝𝑝 𝑦𝑦 = 𝑚𝑚 𝐱𝐱 describes the probability for class 𝑚𝑚 given that we know the input 𝐱𝐱

 A probability over output 𝑦𝑦 implies the output label 𝑦𝑦 is a random variable (r.v.)

 We consider 𝑦𝑦 as a r.v. because the data (from real world) will always involve a certain amount of randomness (much like 
the output from linear regression that was probabilistic due to random error 𝜖𝜖)

4



A statistical view of the Classification problem
 How to construct a classifier which can not only predict classes but also learn the class probabilities 𝑝𝑝 𝑦𝑦 | 𝐱𝐱 ?

 Consider the simplest case of binary classification 𝑀𝑀 = 2 and 𝑦𝑦 = −1 or 1

 In this binary classification case

 By the laws of probability,
𝑝𝑝 𝑦𝑦 = 1|𝐱𝐱 + 𝑝𝑝 𝑦𝑦 = −1|𝐱𝐱 = 1

 Since 𝑔𝑔 𝐱𝐱 is a model for a probability, it is natural to require that 0 ≤ 𝑔𝑔 𝐱𝐱 ≤ 1 for any 𝐱𝐱

 For a multi-class problem, the classifier should return a vector-valued function 𝒈𝒈 𝐱𝐱 , where

𝑝𝑝 𝑦𝑦 = 1|𝐱𝐱
𝑝𝑝 𝑦𝑦 = 2|𝐱𝐱

⋮
𝑝𝑝 𝑦𝑦 = 𝑀𝑀|𝐱𝐱

is modelled by 

𝑔𝑔1 𝐱𝐱
𝑔𝑔2 𝐱𝐱
⋮

𝑔𝑔𝑀𝑀 𝐱𝐱
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𝑝𝑝 𝑦𝑦 = 1|𝐱𝐱  will be modelled by 𝑔𝑔(𝐱𝐱)

𝑝𝑝 𝑦𝑦 = −1|𝐱𝐱  will be modelled by 1 − 𝑔𝑔(𝐱𝐱)

Since 𝒈𝒈 𝐱𝐱  models a probability vector, each 
element 𝑔𝑔𝑚𝑚 𝐱𝐱 ≥ 0 and ∑𝑚𝑚=1

𝑀𝑀 𝑔𝑔𝑚𝑚 𝐱𝐱 = 1



Logistic Regression model for binary classification
 Logistic regression can be viewed as an extension of linear regression that does (binary) classification (instead of 

regression)

 We wish to learn a function 𝑔𝑔(𝐱𝐱) that approximates the conditional probability of the positive class, 𝑝𝑝 𝑦𝑦 = 1|𝐱𝐱

 Idea of Logistic Regression: we start with the linear regression model which, without the noise term 𝜖𝜖
 Define logit, 𝑧𝑧 = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥1 + 𝜃𝜃2𝑥𝑥2 + ⋯+ 𝜃𝜃𝑝𝑝𝑥𝑥𝑝𝑝 = 𝐱𝐱𝑇𝑇𝜽𝜽
 Logit takes values on the entire real line, but we need a function that returns a value in the interval 0, 1

 Squash the logit 𝑧𝑧 = 𝐱𝐱𝑇𝑇𝜽𝜽 into the interval 0, 1 by using the logistic function, ℎ 𝑧𝑧 = 𝑒𝑒𝑧𝑧

1+𝑒𝑒𝑧𝑧
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Logistic Regression
 Idea of Logistic Regression: we start with the linear regression model which, without the noise term
 Define logit, 𝑧𝑧 = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥1 + 𝜃𝜃2𝑥𝑥2 + ⋯+ 𝜃𝜃𝑝𝑝𝑥𝑥𝑝𝑝 = 𝐱𝐱𝑇𝑇𝜽𝜽
 Logit takes values on the entire real line, but we need a function that returns a value in the interval 0, 1

 Squash the logit 𝑧𝑧 = 𝐱𝐱𝑇𝑇𝜽𝜽 into the interval 0, 1 by using the logistic function ℎ 𝑧𝑧 = 𝑒𝑒𝑧𝑧

1+𝑒𝑒𝑧𝑧

 Recall that 𝑔𝑔 𝐱𝐱 was used to model for 𝑝𝑝 𝑦𝑦 = 1|𝐱𝐱

 Using the logistic function for 𝑔𝑔 𝐱𝐱 restricts the values between 0 and 1 and can be interpreted as a probability

𝑔𝑔 𝐱𝐱;𝜽𝜽 = 𝑒𝑒𝐱𝐱𝑇𝑇𝜽𝜽

1+𝑒𝑒𝐱𝐱𝑇𝑇𝜽𝜽

 It implicitly means that a model for 𝑝𝑝 𝑦𝑦 = −1|𝐱𝐱 is

1 − 𝑔𝑔 𝐱𝐱;𝜽𝜽 = 1 −
𝑒𝑒𝐱𝐱𝑇𝑇𝜽𝜽

1 + 𝑒𝑒𝐱𝐱𝑇𝑇𝜽𝜽
=

1
1 + 𝑒𝑒𝐱𝐱𝑇𝑇𝜽𝜽

=
𝑒𝑒−𝐱𝐱𝑇𝑇𝜽𝜽

1 + 𝑒𝑒−𝐱𝐱𝑇𝑇𝜽𝜽
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Logistic Regression
 Logistic Regression: Essentially linear regression appended with logistic function
 Logit, 𝑧𝑧 = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥1 + 𝜃𝜃2𝑥𝑥2 + ⋯+ 𝜃𝜃𝑝𝑝𝑥𝑥𝑝𝑝 = 𝐱𝐱𝑇𝑇𝜽𝜽

 𝑝𝑝 𝑦𝑦 = 1|𝐱𝐱;𝜽𝜽 = 𝑔𝑔 𝐱𝐱;𝜽𝜽 = 𝑒𝑒𝐱𝐱𝑇𝑇𝜽𝜽

1+𝑒𝑒𝐱𝐱𝑇𝑇𝜽𝜽
, 𝑝𝑝 𝑦𝑦 = −1|𝐱𝐱;𝜽𝜽 = 1 − 𝑔𝑔 𝐱𝐱;𝜽𝜽 = 𝑒𝑒−𝐱𝐱𝑇𝑇𝜽𝜽

1+𝑒𝑒−𝐱𝐱𝑇𝑇𝜽𝜽

 Logistic regression is a method for classification, not regression (despite its misleading name)!

 The randomness in classification is statistically modelled by the class probability 𝑝𝑝 𝑦𝑦 = 𝑚𝑚|𝐱𝐱 , instead of additive noise 𝜖𝜖

 Like linear regression, logistic regression is also a parametric model, and we learn the parameters 𝜽𝜽 from training data
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Training binary classification model with Maximum Likelihood
 Logistic function is a nonlinear function 

 Therefore, a closed-form solution to logistic regression cannot be derived

 Maximum likelihood perspective of learning 𝜽𝜽 from training data 
�𝜽𝜽 = argmax

𝜽𝜽
𝑝𝑝 𝒚𝒚 𝐗𝐗;𝜽𝜽

 Similar to linear regression, we assume that the training data points are independent, and we consider the logarithm of 
the likelihood function for numerical reasons

�𝜽𝜽 = argmax
𝜽𝜽

ln𝑝𝑝 𝒚𝒚 𝐗𝐗;𝜽𝜽 = argmax
𝜽𝜽

�
𝑖𝑖=1

𝑁𝑁
ln 𝑝𝑝 𝑦𝑦𝑖𝑖 𝐱𝐱𝑖𝑖;𝜽𝜽 = argmin

𝜽𝜽
�

𝑖𝑖=1

𝑁𝑁
−ln 𝑝𝑝 𝑦𝑦𝑖𝑖 𝐱𝐱𝑖𝑖;𝜽𝜽

 Note that 𝑝𝑝 𝑦𝑦 = 1 𝐱𝐱;𝜽𝜽 is modelled using 𝑔𝑔 𝐱𝐱;𝜽𝜽 which implies
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−ln 𝑝𝑝 𝑦𝑦𝑖𝑖 𝐱𝐱𝑖𝑖;𝜽𝜽 = �
−ln𝑔𝑔 𝐱𝐱𝑖𝑖;𝜽𝜽 if 𝑦𝑦𝑖𝑖 = 1

−ln 1 − 𝑔𝑔 𝐱𝐱𝑖𝑖;𝜽𝜽 if 𝑦𝑦𝑖𝑖 = −1



Training binary classification model with Maximum Likelihood
 Assume that the training data points are independent, and we consider the logarithm of the likelihood function for 

numerical reasons
�𝜽𝜽 = argmax

𝜽𝜽
ln𝑝𝑝 𝒚𝒚 𝐗𝐗;𝜽𝜽 = argmax

𝜽𝜽
�

𝑖𝑖=1

𝑁𝑁
ln 𝑝𝑝 𝑦𝑦𝑖𝑖 𝐱𝐱𝑖𝑖;𝜽𝜽 = argmin

𝜽𝜽
�

𝑖𝑖=1

𝑁𝑁
−ln 𝑝𝑝 𝑦𝑦𝑖𝑖 𝐱𝐱𝑖𝑖;𝜽𝜽

 𝑝𝑝 𝑦𝑦 = 1 𝐱𝐱;𝜽𝜽 is modelled using 𝑔𝑔 𝐱𝐱;𝜽𝜽

 Cross entropy loss can be used for any binary classifier, not just logistic regression, that predicts class probabilities 𝑔𝑔 𝐱𝐱;𝜽𝜽

 The corresponding cost function (or average loss function)
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−ln 𝑝𝑝 𝑦𝑦𝑖𝑖 𝐱𝐱𝑖𝑖;𝜽𝜽 = �
−ln𝑔𝑔 𝐱𝐱𝑖𝑖;𝜽𝜽 if 𝑦𝑦𝑖𝑖 = 1

−ln 1 − 𝑔𝑔 𝐱𝐱𝑖𝑖;𝜽𝜽 if 𝑦𝑦𝑖𝑖 = −1

Binary Cross-entropy loss function, 𝐿𝐿 𝑦𝑦𝑖𝑖 ,𝑔𝑔 𝐱𝐱𝑖𝑖;𝜽𝜽

𝐽𝐽 𝜽𝜽 =
1
𝑁𝑁�

𝑖𝑖=1

𝑁𝑁

�
−ln𝑔𝑔 𝐱𝐱𝑖𝑖;𝜽𝜽 if 𝑦𝑦𝑖𝑖 = 1

−ln 1 − 𝑔𝑔 𝐱𝐱𝑖𝑖;𝜽𝜽 if 𝑦𝑦𝑖𝑖 = −1



Training Logistic Regression model with Maximum Likelihood
 We can write the cost function in more detail for logistic regression

 Hence, we get the same expression in both cases and can write the cost function compactly as:

𝐽𝐽 𝜽𝜽 =
1
𝑁𝑁�

𝑖𝑖=1

𝑁𝑁

�
−ln𝑔𝑔 𝐱𝐱𝑖𝑖;𝜽𝜽 if 𝑦𝑦𝑖𝑖 = 1

−ln 1 − 𝑔𝑔 𝐱𝐱𝑖𝑖;𝜽𝜽 if 𝑦𝑦𝑖𝑖 = −1

=
1
𝑁𝑁�

𝑖𝑖=1

𝑁𝑁

− ln
𝑒𝑒𝑦𝑦𝑖𝑖 𝐱𝐱𝑖𝑖𝑇𝑇𝜽𝜽

1 + 𝑒𝑒𝑦𝑦𝑖𝑖 𝐱𝐱𝑖𝑖𝑇𝑇𝜽𝜽
=

1
𝑁𝑁�

𝑖𝑖=1

𝑁𝑁

− ln
1

1 + 𝑒𝑒−𝑦𝑦𝑖𝑖 𝐱𝐱𝑖𝑖𝑇𝑇𝜽𝜽
=

1
𝑁𝑁�

𝑖𝑖=1

𝑁𝑁

ln 1 + 𝑒𝑒−𝑦𝑦𝑖𝑖 𝐱𝐱𝑖𝑖𝑇𝑇𝜽𝜽
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For 𝑦𝑦𝑖𝑖 = 1,        𝑔𝑔 𝐱𝐱𝑖𝑖;𝜽𝜽 = 𝑒𝑒𝐱𝐱𝑖𝑖
𝑇𝑇𝜽𝜽

1+𝑒𝑒𝐱𝐱𝑖𝑖𝑇𝑇𝜽𝜽
= 𝑒𝑒𝑦𝑦𝑖𝑖 𝐱𝐱𝑖𝑖

𝑇𝑇𝜽𝜽

1+𝑒𝑒𝑦𝑦𝑖𝑖 𝐱𝐱𝑖𝑖𝑇𝑇𝜽𝜽

For 𝑦𝑦𝑖𝑖 = −1,        1 − 𝑔𝑔 𝐱𝐱𝑖𝑖;𝜽𝜽 = 1

1+𝑒𝑒𝐱𝐱𝑖𝑖𝑇𝑇𝜽𝜽
= 𝑒𝑒−𝐱𝐱𝑖𝑖

𝑇𝑇𝜽𝜽

1+𝑒𝑒−𝐱𝐱𝑖𝑖𝑇𝑇𝜽𝜽
= 𝑒𝑒𝑦𝑦𝑖𝑖 𝐱𝐱𝑖𝑖

𝑇𝑇𝜽𝜽

1+𝑒𝑒𝑦𝑦𝑖𝑖 𝐱𝐱𝑖𝑖𝑇𝑇𝜽𝜽



Training Logistic Regression model with Maximum Likelihood
 Cost function in logistic regression is given by:

𝐽𝐽 𝜽𝜽 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

ln 1 + 𝑒𝑒−𝑦𝑦𝑖𝑖 𝐱𝐱𝑖𝑖𝑇𝑇𝜽𝜽

 The logistic loss 𝐿𝐿 𝑦𝑦𝑖𝑖 , 𝐱𝐱𝑖𝑖;𝜽𝜽 above is a special case of the cross-entropy loss

 Learning a logistic regression model thus amounts to solving the optimization problem:

�𝜽𝜽 = argmin
𝜽𝜽

𝐽𝐽 𝜽𝜽 = argmin
𝜽𝜽

1
𝑁𝑁
∑𝑖𝑖=1𝑁𝑁 ln 1 + 𝑒𝑒−𝑦𝑦𝑖𝑖 𝐱𝐱𝑖𝑖𝑇𝑇𝜽𝜽

 Contrary to linear regression with squared error loss, the above problem has no closed-form solution, so we have to use 
numerical optimization instead
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Logistic loss function, 𝐿𝐿 𝑦𝑦𝑖𝑖 , 𝐱𝐱𝑖𝑖;𝜽𝜽



Predictions using Logistic Regresion
 Logistic regression predicts class probabilities for a test input 𝐱𝐱∗
 by first learning 𝜽𝜽 from training data, and 

 then computing 𝑔𝑔 𝐱𝐱∗ , which is the model for 𝑝𝑝 𝑦𝑦∗ = 1 𝐱𝐱∗

 However, sometimes we want to make a “hard” prediction for the test input 𝐱𝐱∗
 E.g., whether is �𝑦𝑦 𝐱𝐱∗ = 1 or �𝑦𝑦 𝐱𝐱∗ = −1 in binary classification?
 Recall, in 𝑘𝑘NN and decision trees, we made “hard” predictions

 To make hard predictions with logistic regression model, we add a final step, in which the predicted probabilities are 
turned into a class prediction

 The most common approach is to let �𝑦𝑦 𝐱𝐱∗ be the most probable class ← the class having the highest probability

 For binary classification, we can express this as:

�𝑦𝑦 𝐱𝐱∗ = � 1 if 𝑔𝑔 𝐱𝐱∗ > 𝑟𝑟
−1 if 𝑔𝑔 𝐱𝐱∗ ≤ 𝑟𝑟 with decision threshold 𝑟𝑟 = 0.5 (why?) 

14

𝑟𝑟 = 0.5 minimizes the so-called misclassification rate



Decision Boundaries of Logistic Regression
 Decision boundary  ← The point(s) where the prediction changes from from one class to another

 The decision boundary for binary classification can be computed by solving the equation
𝑔𝑔 𝐱𝐱 = 1 − 𝑔𝑔 𝐱𝐱 meaning 𝑝𝑝 𝑦𝑦 = 1|𝐱𝐱;𝜽𝜽 = 𝑝𝑝(𝑦𝑦 = −1|𝐱𝐱;𝜽𝜽)

 The solutions to this equation are points in the input space for which the two classes are predicted to be equally probable

15

Grey plane is the decision boundary



Decision Boundaries of Logistic Regression

 The decision boundary for binary classification can be computed by solving the equation

𝑔𝑔 𝐱𝐱 = 1 − 𝑔𝑔 𝐱𝐱 meaning 𝑝𝑝 𝑦𝑦 = 1|𝐱𝐱;𝜽𝜽 = 𝑝𝑝(𝑦𝑦 = −1|𝐱𝐱;𝜽𝜽)

 The solutions to this equation are points in the input space for which the two classes are predicted to be equally probable

 For binary logistic regression, it means
𝑒𝑒𝐱𝐱𝑇𝑇𝜽𝜽

1 + 𝑒𝑒𝐱𝐱𝑇𝑇𝜽𝜽
=

1
1 + 𝑒𝑒𝐱𝐱𝑇𝑇𝜽𝜽

⟺ 𝑒𝑒𝐱𝐱𝑇𝑇𝜽𝜽 = 1 ⟺ 𝐱𝐱𝑇𝑇𝜽𝜽 = 0

 The equation 𝐱𝐱𝑇𝑇𝜽𝜽 = 0 parameterizes a (linear) hyperplane 

 Therefore, the decision boundaries in logistic regression always have the shape of a (linear) hyperplane
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Prediction and Decision Boundaries of Logistic Regression
 For binary classification, we can express this as:

�𝑦𝑦 𝐱𝐱∗ = �
1 if 𝑔𝑔 𝐱𝐱∗ > 𝑟𝑟
−1 if 𝑔𝑔 𝐱𝐱∗ ≤ 𝑟𝑟 with decision threshold 𝑟𝑟 = 0.5

 Choosing 𝑟𝑟 = 0.5 minimizes the so-called misclassification rate

 The decision boundary for logistic regression lies at 𝐱𝐱𝑇𝑇𝜽𝜽 = 0

⟹ The sign of the expression 𝐱𝐱𝑇𝑇𝜽𝜽 determines if we are predicting the positive (1) or the negative (-1) class

 Compactly, one can write the test output prediction for a test input 𝐱𝐱∗from a logistic regression as

�𝑦𝑦 𝐱𝐱∗ = sign 𝐱𝐱∗𝑇𝑇𝜽𝜽

17



Linear vs Non-linear classifiers
 A classifier whose decision boundaries are linear hyperplanes is a linear classifier

 Logistic regression is a linear classifier

 𝑘𝑘NN and Decision Trees are non-linear classifiers

 Note that the term ‘linear’ has a different sense for linear regression and for linear classification

 Linear regression is a model which is linear in its parameters,

 Linear classifier is a model linear whose decision boundaries are linear
18

Linear classifier
𝑥𝑥1

𝑥𝑥2

Non-Linear classifier
𝑥𝑥1

𝑥𝑥2



Logistic Regression for more than two classes
 For the binary problem, we used the logistic function to design a model for 𝑔𝑔 𝐱𝐱
 𝑔𝑔 𝐱𝐱 a scalar-valued function representing 𝑝𝑝 𝑦𝑦 = 1| 𝐱𝐱

 For a multi-class problem (𝑀𝑀 classes), the classifier should return a vector-valued function 𝒈𝒈 𝐱𝐱 , where

𝑝𝑝 𝑦𝑦 = 1|𝐱𝐱
𝑝𝑝 𝑦𝑦 = 2|𝐱𝐱

⋮
𝑝𝑝 𝑦𝑦 = 𝑀𝑀|𝐱𝐱

is modelled by 𝒈𝒈 𝐱𝐱 =

𝑔𝑔1 𝐱𝐱
𝑔𝑔2 𝐱𝐱
⋮

𝑔𝑔𝑀𝑀 𝐱𝐱

 For this purpose, we define 𝑀𝑀 different logits, 𝑧𝑧𝑚𝑚 = 𝜽𝜽𝑚𝑚 𝑇𝑇𝐱𝐱 , 𝑚𝑚 = 1,2, … ,𝑀𝑀

 The use the softmax function (a vector-valued generalization of logistic function) 

19

Since 𝒈𝒈 𝐱𝐱  models a probability vector, each 
element 𝑔𝑔𝑚𝑚 𝐱𝐱 ≥ 0 and ∑𝑚𝑚=1

𝑀𝑀 𝑔𝑔𝑚𝑚 𝐱𝐱 = 1

softmax 𝒛𝒛 ≜
1

∑𝑚𝑚=1
𝑀𝑀 𝑒𝑒𝑧𝑧𝑚𝑚

𝑒𝑒𝑧𝑧1
𝑒𝑒𝑧𝑧2
⋮

𝑒𝑒𝑧𝑧𝑀𝑀

• 𝒛𝒛 is an 𝑀𝑀-dimensional vector
• softmax 𝒛𝒛  also returns a vector of the same dimension
• By construction, the output vector always sums to 1, and each element 

is always ≥ 0



Multi-class Logistic Regression model
 We have now combined linear regression and softmax function to model multi-class probabilities

𝒈𝒈 𝒛𝒛 = softmax 𝒛𝒛 , where 𝒛𝒛 =

𝑧𝑧1
𝑧𝑧2
⋮
𝑧𝑧𝑀𝑀

=

𝜽𝜽1 𝑇𝑇𝐱𝐱
𝜽𝜽2 𝑇𝑇𝐱𝐱
⋮

𝜽𝜽𝑀𝑀 𝑇𝑇𝐱𝐱

 Equivalently, we can write out the individual class probabilities, that is, the elements of the vector 𝑔𝑔𝑚𝑚 𝐱𝐱

𝑔𝑔𝑚𝑚 𝐱𝐱 =
𝑒𝑒 𝜽𝜽𝑚𝑚 𝑇𝑇𝐱𝐱

∑𝑗𝑗=1𝑀𝑀 𝑒𝑒 𝜽𝜽𝑗𝑗 𝑇𝑇𝐱𝐱
𝑚𝑚 = 1,2, … ,𝑀𝑀

 This is the multiclass logistic regression model

 Note that this construction uses 𝑀𝑀 parameter vectors 𝜽𝜽1, … ,𝜽𝜽𝑀𝑀 (one for each class)

 Note the number of parameters to learn grows with 𝑀𝑀

20
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