APL 405: Machine Learning in Mechanics

Lecture 5: Linear regression

by

Rajdip Nayek

Assistant Professor,
Applied Mechanics Department,
IIT Delhi

Introduction to basic parametric models

- We introduced the supervised machine learning problem as well as two basic non-parametric methods
 - *k*NN and Decision Trees
 - Non-parametric methods don't have a fixed set of parameters
- Now we will look at some basic parametric modelling techniques, particularly
 - Linear regression
 - Logistic regression
- Parametric model
 - Models that have a **certain defined form** and have **a fixed set of parameters** θ which are learned from training data
 - Once the parameters are learned, the training data can be discarded, and predictions depend only on $oldsymbol{ heta}$

Linear Regression

- In both regression and classification settings, we seek a function $f(\mathbf{x}_*)$ that maps the test input \mathbf{x}_* to a prediction
- Regression \rightarrow learn relationships between some input variables $\mathbf{x} = [x_1 \quad x_2 \quad \dots \quad x_p]^T$ and a numerical output y
- The inputs can be either categorical or numerical, but let's consider that all p inputs are numerical
- Mathematically, regression is about learning a model f that maps the input to the output

$$y = f(\mathbf{x}) + \epsilon$$

- ullet is an error term that describes everything about the input-output relationship that cannot be captured by the model
- From a statistical perspective, ε is considered as a random variable and referred to as noise, that is independent of x and has zero mean
- Linear regression model: Output y (a scalar) is an affine combination of p input variables $x_1, x_2, ..., x_p$ plus a noise term

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon$$

• θ_0 , θ_1 , θ_2 , ..., θ_p are called the *parameters* of the model

Linear Regression

• Linear regression model: Output y (a scalar) is an affine combination of p+1 input variables $1, x_1, x_2, ..., x_p$ plus a noise term

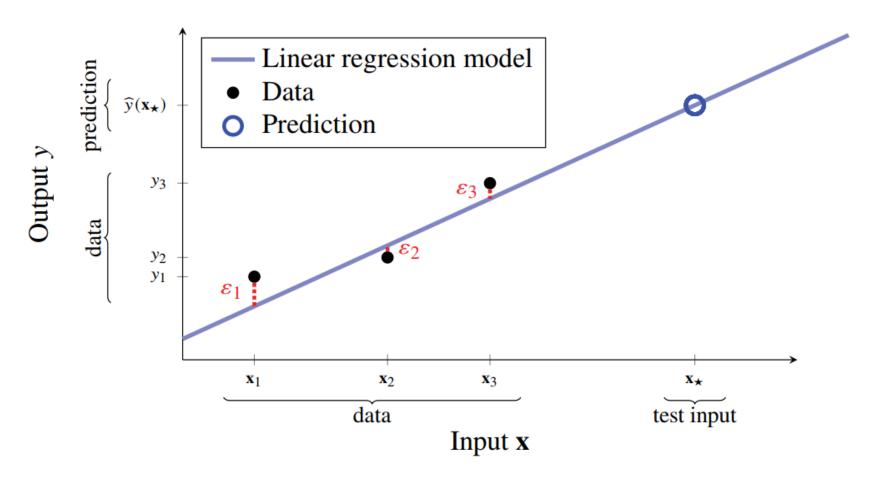
$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \begin{bmatrix} 1 & x_1 & \dots & x_p \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_p \end{bmatrix} + \epsilon = \mathbf{x}^T \boldsymbol{\theta} + \epsilon$$

- θ_0 , θ_1 , θ_2 , ..., θ_p are called the *parameters* of the model
- Symbol x is used both for the p+1 and p-dimensional versions of the input vector, with or without the constant one in the leading position, respectively
- The linear regression model is a **parametric** function of the form $f(\mathbf{x}) = \mathbf{x}^T \boldsymbol{\theta} + \epsilon$
- lacktriangle The parameters $m{ heta}$ can take arbitrary values, and the actual values that we assign to them will control the input—output relationship described by the model
- **Learning of the model** \rightarrow finding suitable values for θ based on observed training data

How to predict on test set?

- How to make predictions $\hat{y}(\mathbf{x}_*)$ for new previously unseen test input $\mathbf{x}_* = [1 \quad x_{*,1} \quad x_{*,2} \quad ... \quad x_{*,p}]^T$?
- Let $\widehat{\boldsymbol{\theta}}$ be the learned parameter value for the linear regression model
- Since the noise term ϵ is random with zero mean and independent of all observed variables, we replace ϵ with 0 in the prediction
- Prediction takes form:

$$\widehat{y}(\mathbf{x}_*) = \mathbf{x}_*^T \widehat{\boldsymbol{\theta}}$$



Training a linear regression model from training data

■ Training data: $\mathcal{T} = \{\mathbf{x}_i, y_i\}_{i=1}^N$

$$\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\epsilon}$$
, $\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \vdots \\ \mathbf{x}_N^T \end{bmatrix}$, $\mathbf{x}_i = \begin{bmatrix} \mathbf{x}_{*,1} \\ \mathbf{x}_{*,2} \\ \vdots \\ \mathbf{x}_{*,n} \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \vdots \\ \mathbf{y}_N \end{bmatrix}$

- Here, ϵ is the vector of noise terms
- Predicted outputs for training data, $\hat{y} = [\hat{y}(\mathbf{x}_1) \quad \hat{y}(\mathbf{x}_2) \quad \cdots \quad \hat{y}(\mathbf{x}_N)]^T$ $\hat{y} = \mathbf{X}\boldsymbol{\theta}$
- Learning the unknown parameters θ amounts to finding their values such that \hat{y} is "similar" to y "Similar" \to finding θ such that $\hat{y} y = \epsilon$ is small
- Formulate a loss function, which gives a mathematical meaning to "similarity" between \hat{y} and y

How to define the problem of learning model parameters?

- Use loss function $L(y, \hat{y}) \to$ measures the closeness of the model's prediction \hat{y} to the observed data y
 - Smaller the loss, better the model fits the data, and vice versa
- Define average loss (or cost function) function, $J(\theta)$, as the average loss over the training data

$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{y}(\mathbf{x}_i; \boldsymbol{\theta}))$$

■ Training a model \rightarrow finding the model parameters θ that minimize the average training loss

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} L(y_i, \widehat{y}(\mathbf{x}_i; \boldsymbol{\theta}))$$

- $\hat{y}(\mathbf{x}_i; \boldsymbol{\theta})$ is the model prediction for the \mathbf{x}_i training input and y_i is the corresponding training output
 - \blacksquare The parameter θ has been put as an argument to denote the dependence of the prediction on it
- The operator $\underset{\boldsymbol{\theta}}{\operatorname{argmin}}$ means 'the value of $\boldsymbol{\theta}$ for which the averaged loss function attains it minimum'

Least squares problem

For regression, a commonly used loss function is the squared error loss

$$L(y, \hat{y}(\mathbf{x}; \boldsymbol{\theta})) = (y - \hat{y}(\mathbf{x}; \boldsymbol{\theta}))^2$$

- This loss function grows quadratically fast as the difference $(y \hat{y}(\mathbf{x}; \boldsymbol{\theta}))$ increases
- The corresponding average loss function (or cost function)

$$J(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}(\mathbf{x}_i; \boldsymbol{\theta}))^2 = \frac{1}{N} ||\mathbf{y} - \hat{\mathbf{y}}||_2^2 = \frac{1}{N} ||\mathbf{y} - \mathbf{X}\boldsymbol{\theta}||_2^2 = \frac{1}{N} ||\boldsymbol{\epsilon}||_2^2$$

- Here, $\|\cdot\|_2^2$ denotes the square of the Euclidean norm. Due to the square, it is called the least squares cost function
- In linear regression, the learning problem effectively finds the best parameter estimate

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{x}_i^T \boldsymbol{\theta})^2 = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{N} \| \mathbf{y} - \mathbf{X} \boldsymbol{\theta} \|_2^2$$

• Closed-form solution exists $\rightarrow \widehat{\boldsymbol{\theta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ if $\mathbf{X}^T \mathbf{X}$ is invertible (will be an exercise in HW)

Linear regression algorithm

- Linear regression with squared error loss is very common in practice, due to its closed-form solution
- Other loss functions lead to optimization problems and often lack closed-form solutions

Training using linear regression model

Training Data: $\mathcal{T} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_N, y_N)\}$

Result: Learned parameter vector $\hat{\boldsymbol{\theta}}$

- 1. Construct matrix of input features ${f X}$ and output vector ${f y}$
- 2. Compute $\hat{\boldsymbol{\theta}}$ by solving $(\mathbf{X}^T\mathbf{X})\hat{\boldsymbol{\theta}} = \mathbf{X}^T\mathbf{y}$

Testing using linear regression model

Data: Learned parameter vector $\widehat{\boldsymbol{\theta}}$

Result: Prediction $\hat{y}(\mathbf{x}_*)$

1. Compute $\hat{y}(\mathbf{x}_*) = \mathbf{x}_*^T \hat{\boldsymbol{\theta}}$

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \vdots \\ \mathbf{x}_N^T \end{bmatrix}, \quad \mathbf{x}_i = \begin{bmatrix} 1 \\ x_{*,1} \\ x_{*,2} \\ \vdots \\ x_{*,p} \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

A maximum likelihood perspective of least squares

- "Likelihood" refers to a statistical concept of a certain function which describes how likely is that a certain value of θ has generated the measurements y
- Instead of selecting a loss function, one could start with the problem

$$\widehat{\boldsymbol{\theta}} = \operatorname*{argmax}_{\boldsymbol{\theta}} p(\boldsymbol{y}|\mathbf{X};\boldsymbol{\theta})$$

- $p(y|X; \theta)$ is the probability density of all observed outputs y in the training data, given all inputs X and parameters θ
- $p(y|X; \theta)$ determines mathematically what 'likely' means

A maximum likelihood perspective of least squares

• Common assumption: Noise terms are independent and identically distributed (i.i.d.), each with a Gaussian distribution (also known as a normal distribution) with mean zero and variance σ_{ϵ}^2

$$\epsilon \sim \mathcal{N}(\epsilon; 0, \sigma_{\epsilon}^2)$$

■ Implies that all observed training data points are independent, and $p(y|X;\theta)$ factorizes out as (prove it)

$$p(\mathbf{y}|\mathbf{X};\boldsymbol{\theta}) = \prod_{i=1}^{N} p(y_i|\mathbf{x}_i;\boldsymbol{\theta})$$

• The linear regression model, $y = \mathbf{x}^T \boldsymbol{\theta} + \epsilon$, together with i.i.d. Gaussian noise assumption leads to

$$p(y_i|\mathbf{x}_i;\boldsymbol{\theta}) = \mathcal{N}(y_i;\mathbf{x}_i^T\boldsymbol{\theta},\sigma_{\epsilon}^2) = \frac{1}{\sqrt{2\pi\sigma_{\epsilon}^2}} \exp\left(-\frac{1}{2\sigma_{\epsilon}^2}(y_i - \mathbf{x}_i^T\boldsymbol{\theta})^2\right)$$

- lacktriangle Recall, we want to maximize the likelihood w.r.t. the parameter $oldsymbol{ heta}$
- Better to work with logarithm of the likelihood (log-likelihood) to prevent numerical overflow

$$\ln p(\mathbf{y}|\mathbf{X};\boldsymbol{\theta}) = \sum_{i=1}^{N} \ln (p(y_i|\mathbf{x}_i;\boldsymbol{\theta}))$$

A maximum likelihood perspective of least squares

Better to work with logarithm of the likelihood (log-likelihood) to prevent numerical overflow

$$\ln p(\mathbf{y}|\mathbf{X};\boldsymbol{\theta}) = \sum_{i=1}^{N} \ln (p(y_i|\mathbf{x}_i;\boldsymbol{\theta}))$$

- Logarithm is a monotonically increasing function, maximizing the loglikelihood is equivalent to maximizing the likelihood
- The linear regression model, $y = \mathbf{x}^T \boldsymbol{\theta} + \epsilon$, together with i.i.d. Gaussian noise assumption leads to

$$\ln p(\mathbf{y}|\mathbf{X};\boldsymbol{\theta}) = -\frac{N}{2}\ln(2\pi\sigma_{\epsilon}^2) - \frac{1}{2\sigma_{\epsilon}^2}\sum_{i=1}^{N}(y_i - \mathbf{x}_i^T\boldsymbol{\theta})^2$$

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ln p(\boldsymbol{y}|\mathbf{X}; \boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \left(-\sum_{i=1}^{N} (y_i - \mathbf{x}_i^T \boldsymbol{\theta})^2 \right) = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{x}_i^T \boldsymbol{\theta})^2$$

- Recall the same estimate is also obtained from linear regression with the least squares cost
- Using squared error loss is equivalent to assuming a Gaussian noise distribution in maximum likelihood formulation
- Other assumptions on ϵ lead to other loss functions (will discuss later)

How to handle categorical input variables?

- We had mentioned earlier that input variables x can be numerical, categorical, or mixed
- Assume that an input variable is categorical and takes only two classes, say A and B
- We can represent such an input variable x using 1 and 0

$$x = \begin{cases} 0, & \text{if } \mathbf{A} \\ 1, & \text{if } \mathbf{B} \end{cases}$$

For linear regression, the model effectively looks like

$$y = \theta_0 + \theta_1 x + \epsilon = \begin{cases} \theta_0 + \epsilon, & \text{if } \mathbf{A} \\ \theta_0 + \theta_1 + \epsilon, & \text{if } \mathbf{B} \end{cases}$$

■ If the input is a categorical variable with more than two classes, let's say A, B, C, and D, use one-hot encoding

$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \text{ if } \mathbf{A}, \quad \mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \text{ if } \mathbf{B}, \quad \mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \text{ if } \mathbf{C}, \quad \mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \text{ if } \mathbf{D}$$