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Supervised Learning: Recap
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Supervised Learning
Learning (training, estimating) a function (or model) 𝑓𝑓 so that it best fits the relationship between 

 the input 𝐱𝐱, and

 the output 𝑦𝑦 
from observed training data (the individual data points are assumed to be (probabilistically) independent) 

𝐷𝐷train = 𝐱𝐱1,𝑦𝑦1 , 𝐱𝐱2,𝑦𝑦2 ,⋯ , 𝐱𝐱𝑁𝑁,𝑦𝑦𝑁𝑁

End goal will be to construct an output prediction �𝑦𝑦 𝐱𝐱∗  for unseen input 𝐱𝐱∗ so that it is close to 

Types of Supervised learning: Classification and Regression 

 Output variable 𝑦𝑦? → categorical → Classification 

 Output variable 𝑦𝑦?→ numerical → Regression

 Input variable can be categorical or numerical or mix of both



Supervised Learning: Recap
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 Parametric vs Non-parametric models

 Prediction errors caused due to bias, variance and irreducible errors

 Bias make algorithms easier to understand but are generally less flexible

 Low bias:  Suggests less assumptions about the function 𝑓𝑓

 High bias: Suggests more assumptions about the function 𝑓𝑓

 Machine learning algorithms that have a high variance are strongly influenced by the specifics of the training data
 

 Low variance: Suggests small changes to the estimated function 𝑓𝑓 with changes to the training dataset
 
 High variance: Suggests large changes to the estimated function 𝑓𝑓 with changes to the training dataset



Overfit vs Underfit
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 Overfitting refers to the phenomenon when a model fits the training data “too well”
 It happens when a model learns the detail and noise in the training data. 
         This means that the noise or random fluctuations in the training data is picked up and learned as concepts by the model. 
 Models that have high variance and low bias leads to overfitting
 Does not generalize to new unseen data well

 Underfitting refers to the phenomenon when a model is unable to fit to the training data
 It happens when a model is “too rigid”
 Models that have high bias and low variance leads to underfitting
 Does not generalize to new unseen data well

Overfitting Balanced fitUnderfitting



Introduction to 𝑘𝑘-Nearest Neighbours (𝑘𝑘-NN)

 We will start with the relatively simple 𝑘𝑘-nearest neighbours (𝑘𝑘-NN) method. 

 Can be used for both regression and classification

 Most ML algorithms are based on the intuition that if the unseen data point 𝐱𝐱∗ is close to training data point 𝐱𝐱𝑖𝑖, then the 
prediction �𝑦𝑦 𝐱𝐱∗ should be close to 𝑦𝑦𝑖𝑖. 

 A simple way to implement this idea is to find the “nearest” training data point

 Compute the EuclideanϮ distance between the unseen input and all training inputs. 

The 𝑖𝑖th Euclidean distance:  𝐱𝐱𝑖𝑖 − 𝐱𝐱∗ 2 = 𝑥𝑥𝑖𝑖,1 − 𝑥𝑥∗,1
2 + 𝑥𝑥𝑖𝑖,2 − 𝑥𝑥∗,2

2 + ⋯+ 𝑥𝑥𝑖𝑖,𝑝𝑝 − 𝑥𝑥∗,𝑝𝑝
2

 Find the data point 𝐱𝐱𝑗𝑗 with the shortest distance to 𝐱𝐱∗, and use its output as the prediction, �𝑦𝑦 𝐱𝐱∗ = 𝑦𝑦𝑗𝑗

 This is the 1-nearest neighbour algorithm
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Ϯ There are many other distances: Manhattan, Mahalanobis, cosine similarity, etc. Use Manhattan distance if inputs variables are not 
similar in type (such as age, gender, height, etc.)



Introduction to 𝑘𝑘-Nearest Neighbours (𝑘𝑘-NN)
 In practice, however, we can rarely say for certain what the output value 𝑦𝑦 will be! 

 Mathematically, we handle this by describing 𝑦𝑦 as a random variable. That is, we consider the data as noisy, meaning that 
it is affected by random errors referred to as noise. 

 Shortcoming:  1-nearest neighbour algorithm is sensitive to noise in data and mis-labelled data
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Every test example in the blue 
shaded area will be mis-
classified as the blue class



Introduction to 𝑘𝑘-Nearest Neighbours (𝑘𝑘-NN)
 In practice, however, we can rarely say for certain what the output value 𝑦𝑦 will be! 

 Mathematically, we handle this by describing 𝑦𝑦 as a random variable. That is, we consider the data as noisy, meaning that 
it is affected by random errors referred to as noise. 

 Shortcoming:  1-nearest neighbour algorithm is sensitive to noise in data and mis-labelled data

 How to improve: Use 𝑘𝑘-nearest neighbours to obtain a majority vote (or take an average)
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Every test example in the blue 
shaded area will be mis-
classified as the blue class

Every test example in the blue 
shaded area will be classified 
as the red class



Introduction to 𝑘𝑘-Nearest Neighbours (𝑘𝑘-NN)

 Is 𝑘𝑘-NN a parametric or non-parametric algorithm? 

 It makes no assumptions about the functional form and has no fixed set of parameters. Uses the entire 
training data when making predictions
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Data:  Training data 𝐱𝐱𝑖𝑖 ,𝑦𝑦𝑖𝑖  𝑖𝑖=1
𝑁𝑁  and unseen (test) input 𝐱𝐱∗

Result: Predicted test output �𝑦𝑦 𝐱𝐱∗

1. Compute the distances 𝐱𝐱𝑖𝑖 − 𝐱𝐱∗ 2 for all training data points 𝑖𝑖 = 1,2,⋯ ,𝑁𝑁

2. Find 𝑘𝑘 examples 𝐱𝐱𝑖𝑖 ,𝑦𝑦𝑖𝑖  closest to the test instance 𝐱𝐱∗
3. Compute the prediction �𝑦𝑦 𝐱𝐱∗  

�𝑦𝑦 𝐱𝐱∗ = � Mean (or median) of 𝑘𝑘 closest examples 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑
Majority vote mode of 𝑘𝑘 closest examples 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂

𝒌𝒌-NN algorithm



Example of 𝑘𝑘NN for binary classification

 Predict the output for 𝐱𝐱∗ = 1 2 𝑇𝑇

 Consider two different 𝑘𝑘NN classifiers

 one using 𝑘𝑘 = 1, and (result is red)

 another using 𝑘𝑘 = 3 (result is blue)
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𝑖𝑖 𝑥𝑥𝑖𝑖,1 𝑥𝑥𝑖𝑖,2 𝑦𝑦𝑖𝑖
1 -1 3 Red

2 2 1 Blue

3 -2 2 Red

4 -1 2 Blue

5 -1 0 Blue

6 1 1 Red

𝑖𝑖 𝐱𝐱𝑖𝑖 − 𝐱𝐱∗ 2 𝑦𝑦𝑖𝑖
6 1 Red

2 2 Blue

4 4 Blue

1 5 Red

5 8 Blue

3 9 Red



Decision boundary of a classifier

 Predict the output for 𝐱𝐱∗ = 1 2 𝑇𝑇

 Consider two different 𝑘𝑘NN classifiers

 one using 𝑘𝑘 = 1, and

 another using 𝑘𝑘 = 3
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𝑖𝑖 𝑥𝑥1,𝑖𝑖 𝑥𝑥2,i 𝑦𝑦𝑖𝑖
1 -1 3 Red

2 2 1 Blue

3 -2 2 Red

4 -1 2 Blue

5 -1 0 Blue

6 1 1 Red

 Decision boundaries are the points in input space where 
the class prediction changes, that is, the borders 
between different classes

 They can help to understand a classifier and given a 
concise summary of a classifier



How to choose 𝑘𝑘?
 The number of neighbours 𝑘𝑘 is chosen by the user

 Since it is not learned, it is not a parameter, and we refer to it as the hyperparameter 

 The choice of hyperparameter 𝑘𝑘 has a big impact on the predictions made by 𝑘𝑘-NN

 Small 𝑘𝑘
• Good at capturing fine-grained patterns

• May overfit, i.e. be sensitive to random errors in the training data

 Large 𝑘𝑘
• Makes stable predictions by averaging over lots of samples

• May underfit, i.e. fail to capture important patterns

 Balancing 𝑘𝑘 (trade-off between flexibility and rigidity)
• Optimal choice of 𝑘𝑘 depends on the number of data points 𝑁𝑁

• Rule of thumb: choose 𝑘𝑘 < 𝑁𝑁

• We can choose 𝑘𝑘 using cross-validation
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𝑘𝑘 = 1

𝑘𝑘 = 15



Validation and Test sets

 We can tune the hyperparameters using a validation set:

 The test set is used only at the very end, to measure the generalization performance of the algorithm.
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Pitfalls of 𝑘𝑘NN: Curse of dimensionality

 𝑘𝑘NN works well with a small dimension of inputs (e.g. 2-3), but struggles when the input dimension is high

 In high dimensions, “most” points are far apart and are approximately at the same distance
 Hence, our intuition that works for distances in 2- and 3- dimensional spaces breaks down in higher dimensions

 We can show this by applying the rules of expectation and covariance of random variables (HW) 
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Pitfalls of 𝑘𝑘NN: Normalization

 𝑘𝑘NN can be quite  sensitive to the range of the input features

 Example, 𝐱𝐱 = 𝑥𝑥1 𝑥𝑥2 𝑇𝑇, where 𝑥𝑥1 is in the range [100, 1000] and the values of 𝑥𝑥2 is in the range [0, 1] (or vice-versa)

 The Euclidean distance between a test point 𝐱𝐱∗and a training data point 𝐱𝐱𝑖𝑖 is 𝑥𝑥𝑖𝑖,1 − 𝑥𝑥∗,1
2 + 𝑥𝑥𝑖𝑖,2 − 𝑥𝑥∗,2

2

 The Euclidean distance is dominated by the first term 𝑥𝑥𝑖𝑖,1 − 𝑥𝑥∗,1
2

simply due to the larger magnitude of 𝑥𝑥1

 Thus, the variable 𝑥𝑥1 gets considered much more important than 𝑥𝑥2 by 𝑘𝑘NN 
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𝑥𝑥2 

𝑥𝑥1 



Pitfalls of 𝑘𝑘NN: Normalization
 𝑘𝑘NN can be sensitive to the ranges of the input features

 Simple fix: Normalize each dimension to be in the range [0, 1]

 𝑥̅𝑥𝑖𝑖,𝑗𝑗 =
𝑥𝑥𝑖𝑖,𝑗𝑗−min𝑖𝑖 𝑥𝑥𝑖𝑖,𝑗𝑗

max
𝑖𝑖

𝑥𝑥𝑖𝑖,𝑗𝑗 −min𝐢𝐢 𝑥𝑥𝑖𝑖,𝑗𝑗
for all 𝑖𝑖 = 1,2,⋯ ,𝑁𝑁 and 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝

 Simple fix: Standardize each dimension using mean 𝜇𝜇𝑗𝑗 and standard deviation 𝜎𝜎𝑗𝑗 of data

 𝑥̅𝑥𝑖𝑖,𝑗𝑗 =
𝑥𝑥𝑖𝑖,𝑗𝑗−𝜇𝜇𝑗𝑗
𝜎𝜎𝑗𝑗

for all 𝑖𝑖 = 1,2,⋯ ,𝑁𝑁 and 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝
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𝑥𝑥2 

𝑥𝑥1 



Pitfalls of 𝑘𝑘NN: Computationally costly

 Computational cost for training time: 0

 Computational cost at test time, per test data point
 Calculate 𝑝𝑝-dimensional Euclidean distances with 𝑁𝑁 data points: 𝒪𝒪 𝑁𝑁𝑁𝑁
 Sort the distances: 𝒪𝒪 𝑁𝑁 log𝑁𝑁

 This must be done for each test data point, which is very expensive by the standards of a learning algorithm!

 Need to store the entire dataset in memory! 

 Gives decent accuracy when there is lots of data 
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MNIST digit classification
• Handwritten digits
• 28x28 pixel images: 𝑝𝑝 = 784
• 60,000 training samples
• 10,000 test samples



Summary
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 𝑘𝑘-Nearest Neighbors algorithm is a non-parametric algorithm that can be used for both classification and regression

 𝑘𝑘NN stores the entire training dataset in memory which it uses as its representation

 𝑘𝑘NN does not learn any model

 𝑘𝑘NN makes predictions just-in-time by calculating the similarity between a test input and each training sample

 There are many distance measures to choose from to match the structure of your input data

 It is a good idea to rescale your data, such as using normalization, when using 𝑘𝑘NN
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