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Recap
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• We looked at different types of loss functions for regression and classification

• Learning the parameters of a chosen parametric model often requires minimizing an appropriate loss funciton

• An ML engineer therefore needs to be familiar with some strategies to solve optimization problems

• In this lecture, we will introduce some ideas behind some of the optimization methods used in ML



Optimization in Machine Learning (ML)
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 Optimization → Finding the minimum or maximum of an objective function

 A maximization problem can be formulated as a minimization problem

�𝜽𝜽 = argmax
𝜽𝜽

𝐽𝐽 𝜽𝜽 = argmin
𝜽𝜽

−𝐽𝐽 𝜽𝜽

    So we will limit ourselves to minimization problems only

 Optimization in ML is primarily used in two ways:

 Training a model by minimizing the cost function w.r.t. the model parameters

 Objective function : 𝐽𝐽 𝜽𝜽

 Optimization variable: 𝜽𝜽

 Tuning hyperparameters, such as the regularization parameter 𝜆𝜆

 Objective function : 𝐸𝐸hold−out
 Optimization variable: Hyperparameters (e.g. 𝜆𝜆)



Convex functions
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 An important class of objective functions are convex functions

 Optimization is much easier for convex objective functions, and it is a good idea to consider whether a non-
convex optimization can be reformulated into a convex problem (but it is not always possible)

 Convex functions have unique minimum and no other local minima

 Examples of convex functions are cost functions for logistic regression and linear regression

 However, most problems in ML do not lead to convex functions



Convex functions
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 An important class of objective functions are convex functions

 Convex functions are functions such that a straight line between any two points of the function lie above the 
function

 The function 𝑓𝑓 is a convex function if for all 𝑥𝑥, 𝑦𝑦 in the domain convex function of 𝑓𝑓, and for any scalar 𝜃𝜃 with 
0 ≤ 𝜙𝜙 ≤ 1, we have

𝑓𝑓 𝜙𝜙𝑥𝑥 + 1 − 𝜙𝜙 𝑦𝑦 ≤ 𝜙𝜙𝜙𝜙 𝑥𝑥 + (1 − 𝜙𝜙)𝑓𝑓(𝑦𝑦)

 Furthermore, if 𝑓𝑓 is a differentiable function, then we can specify convexity in terms of gradient ∇𝑥𝑥𝑓𝑓(𝑥𝑥)

𝑓𝑓 𝑦𝑦 ≥ 𝑓𝑓 𝑥𝑥 + ∇𝑥𝑥𝑓𝑓 𝑥𝑥 ⋅ (𝑦𝑦 − 𝑥𝑥)

 If we further know that a function 𝑓𝑓(𝑥𝑥) is twice differentiable, that is, the Hessian (double derivative) exists for 
all values in the domain of 𝑥𝑥, then the function 𝑓𝑓(𝑥𝑥) is convex if and only if ∇𝑥𝑥2𝑓𝑓(𝑥𝑥) is positive semidefinite



Gradient of a cost function 
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 Training examples: 𝐱𝐱1, 𝑦𝑦1 , 𝐱𝐱2, 𝑦𝑦2 ,⋯ , 𝐱𝐱𝑁𝑁, 𝑦𝑦𝑁𝑁

 Let’s say the chosen model be: 𝑦𝑦 = 𝑓𝑓𝜽𝜽 𝒙𝒙

 Cost function → Average over individual training losses

𝐽𝐽 𝜽𝜽 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝐿𝐿 𝑦𝑦𝑖𝑖, 𝑓𝑓𝜽𝜽 𝐱𝐱𝑖𝑖

 Gradient of loss function w.r.t. parameter 𝜽𝜽

∇𝜽𝜽𝐽𝐽 𝜽𝜽 = ∇𝜽𝜽
1
𝑁𝑁�

𝑖𝑖=1

𝑁𝑁

𝐿𝐿 𝑦𝑦𝑖𝑖, 𝑓𝑓𝜽𝜽 𝐱𝐱𝑖𝑖

∇𝜽𝜽𝐽𝐽 𝜽𝜽 =
1
𝑁𝑁�

𝑖𝑖=1

𝑁𝑁

∇𝜽𝜽𝐿𝐿 𝑖𝑖

Note: 𝜽𝜽 would represent 
hyperparameters in the case 
of hyperparameter 
optimization



Gradient Descent
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 Gradient of loss function w.r.t. parameter 𝜽𝜽

 ∇𝜽𝜽𝐽𝐽 𝜽𝜽 has the same dimension as 𝜽𝜽

 ∇𝜽𝜽𝐽𝐽 𝜽𝜽 describes the direction in which 𝐽𝐽(𝜽𝜽) increases. Therefore, −∇𝜽𝜽𝐽𝐽 𝜽𝜽 describes the direction in
which 𝐽𝐽(𝜽𝜽) decreases

 Taking a (small) step in the direction of the negative gradient will reduce the value of cost function 

𝐽𝐽 𝜽𝜽 − 𝛾𝛾∇𝜽𝜽𝐽𝐽 𝜽𝜽 ≤ 𝐽𝐽 𝜽𝜽 for some 𝛾𝛾 > 0

 This suggests that if we have 𝜽𝜽(𝑡𝑡) and want to select 𝜽𝜽(𝑡𝑡+1) such that 𝐽𝐽 𝜽𝜽(𝑡𝑡+1) ≤ 𝐽𝐽 𝜽𝜽(𝑡𝑡) , we should 

∇𝜽𝜽𝐽𝐽 𝜽𝜽 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

∇𝜽𝜽𝐿𝐿 𝑖𝑖

Update 𝜽𝜽(𝑡𝑡+1) = 𝜽𝜽(𝑡𝑡) − 𝛾𝛾∇𝜽𝜽𝐽𝐽 𝜽𝜽(𝑡𝑡)  
with some 𝛾𝛾 > 0 𝛾𝛾 is called the learning rate

GD is a local optimizer,  there is no guarantee that it will find the global minimum



Batch gradient descent (Batch GD)
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 Specify a learning rate, compute the total gradient ∇𝜽𝜽𝐽𝐽 𝜽𝜽  by averaging over all individual loss function gradients 
for every training example, and then update the parameters 𝜽𝜽

 The algorithm goes over the entire data once before updating the parameters

 This is known as batch gradient descent (BGD), since we treat the entire training set as a batch

• Pros: There is no approximation in gradient calculation. Each update 
step guarantees that the loss will decrease, if 𝛾𝛾 is small enough 

• Cons: However, Batch GD can be very time-consuming for a large 
datasets (very large 𝑁𝑁), due the summation over 𝑁𝑁 datapoints

∇𝜽𝜽𝐽𝐽 𝜽𝜽 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

∇𝜽𝜽𝐿𝐿 𝑖𝑖 Update 𝜽𝜽(𝑡𝑡+1) = 𝜽𝜽(𝑡𝑡) − 𝛾𝛾∇𝜽𝜽𝐽𝐽 𝜽𝜽(𝑡𝑡)  
with some 𝛾𝛾 > 0



Batch gradient descent (Batch GD)
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∇𝜽𝜽𝐽𝐽 𝜽𝜽 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

∇𝜽𝜽𝐿𝐿 𝑖𝑖 Update 𝜽𝜽(𝑡𝑡+1) = 𝜽𝜽(𝑡𝑡) − 𝛾𝛾∇𝜽𝜽𝐽𝐽 𝜽𝜽(𝑡𝑡)  
with some 𝛾𝛾 > 0

 Batch gradient descent treat the entire training set as a single batch

 Updates the parameter vector after each full pass (epoch) over the entire dataset



Stochastic gradient descent (SGD)

10

 When 𝑁𝑁 is very large, the summation can involve summing a many terms

 Also, it can be an issue to keep all data points in the computer memory at the same time

 Subsampling a small set from the full training set might be more useful

 In SGD, one random samples (without replacement) a training pair 𝐱𝐱𝑖𝑖, 𝑦𝑦𝑖𝑖  from the full training dataset, and 

• Pros: SGD can make significant progress before it has even looked at the entire 
data!

• Cons: It uses an approximate estimate of gradient. There is no guarantee that 
each step will decrease the loss 

∇𝜽𝜽𝐽𝐽 𝜽𝜽 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

∇𝜽𝜽𝐿𝐿 𝑖𝑖

Updates 𝜽𝜽(𝑡𝑡+1) = 𝜽𝜽(𝑡𝑡) − 𝛾𝛾∇𝜽𝜽𝐿𝐿 𝑖𝑖 𝜽𝜽(𝑡𝑡)  
with some 𝛾𝛾 > 0

Update 𝜽𝜽(𝑡𝑡+1) = 𝜽𝜽(𝑡𝑡) − 𝛾𝛾∇𝜽𝜽𝐽𝐽 𝜽𝜽(𝑡𝑡)  
with some 𝛾𝛾 > 0



Stochastic gradient descent (SGD)
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 We see many fluctuations. Why ? Because we are making greedy decisions

 Each data point is trying to push the parameters in a direction most favorable to it (without being aware of how 
the parameter update affects other points)

 A parameter update which is locally favorable to one point may harm other points (its almost as if the data points 
are competing with each other)

 There is no guarantee that each local greedy move will reduce the global error 

• Can we reduce the oscillations by improving our stochastic estimates of the 
gradient (currently estimated from just 1 data point at a time)?

• Yes, let’s look at mini-batch SGD



Mini-batch gradient descent 
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• Compute the gradients on a medium-sized set of training examples, called a mini-batch

• Note that the algorithm updates the parameters after it sees a batch size 𝐵𝐵 number of data points

• The stochastic estimates of gradients here are slightly better and less noisy 

• Batch size = 1 leads to SGD!     Typical batch sizes are 64, 128, 256



Performance of mini-batch gradient descent
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The mini-batch size B is a hyperparameter that needs to be set

• Large batches: converge in fewer parameter updates because each stochastic gradient is less noisy

• Small batches: perform more parameter updates because each one requires less computation 



Things to remember
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 𝑁𝑁 is the total number of training examples

 𝐵𝐵 is the mini batch size

 1 epoch = one pass over the entire data

 1 iteration = one update step of the parameters

Algorithm Batch size Number of iterations 
in 1 epoch

Batch GD 𝑁𝑁 1

SGD 1 𝑁𝑁

Mini-batch GD 𝐵𝐵 ~ �𝑁𝑁 𝐵𝐵



Learning rate 
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 Learning rate 𝛾𝛾 determines how big the 𝜽𝜽-step to take at each iteration

 In practice we do not know what learning rate 𝛾𝛾 to choose

 𝛾𝛾 is usually selected by the user, or it could be viewed as a hyperparameter

∇𝜽𝜽𝐽𝐽 𝜽𝜽 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

∇𝜽𝜽𝐿𝐿 𝑖𝑖 Update 𝜽𝜽(𝑡𝑡+1) = 𝜽𝜽(𝑡𝑡) − 𝛾𝛾∇𝜽𝜽𝐽𝐽 𝜽𝜽(𝑡𝑡)  
with some 𝛾𝛾 > 0



Different modifications to Gradient Descent 
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 Different modifications that can be applied to GD, SGD or mini-batch GD to improve convergence to a solution 
(possibly a local minimum)

 Two lines of improvements to traditional GD (or SGD or mini-batch GD)

𝜽𝜽 𝑡𝑡+1 ← 𝜽𝜽 𝑡𝑡 − 𝛾𝛾 ∇𝜽𝜽𝐽𝐽 𝜽𝜽 𝑡𝑡

 We will demonstrate these modifications on GD, but they are equally applicable to SGD and mini-batch GD as well

Adaptively modify the gradients 
to accelerate learning

Adaptively modify the learning rate 
to prevent end oscillations

• Momentum-based gradients • AdaGrad
• RMSProp

ADAM



Momentum-based gradients
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Intuition

 If you are repeatedly being asked to move in the same direction, then you should gain some confidence and start 
taking bigger steps in that direction

 If you move back-and-forth in different directions (i.e oscillations), then you should take smaller steps in the 
oscillatory directions

Slow learning along gentle slopes, 
many steps taken to converge

https://distill.pub/2017/momentum/

Oscillations across steep slopes



Gradient descent with momentum
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 Can we accelerate learning by looking at the past behavior? Yes, use momentum

 If you are repeatedly being asked to move in the same direction, then you should gain some confidence and start 
taking bigger steps in that direction

 If you move back-and-forth in different directions (i.e., oscillations), then you should take smaller steps in the 
oscillatory directions

 Gain momentum by looking at the history of past gradients 

• Compute momentum
𝒑𝒑 𝑡𝑡+1 ← 𝜇𝜇𝒑𝒑 𝑡𝑡 + 𝛾𝛾∇𝜽𝜽𝐽𝐽 𝜽𝜽 𝑡𝑡

• Perform parameter update
𝜽𝜽 𝑡𝑡+1 ← 𝜽𝜽 𝑡𝑡 − 𝒑𝒑 𝑡𝑡+1

Update rule
−𝛾𝛾∇𝜽𝜽𝐽𝐽 𝜽𝜽 𝑡𝑡

−𝜇𝜇𝒑𝒑 𝑡𝑡

𝜽𝜽 𝑡𝑡

𝜽𝜽 𝑡𝑡+1

−𝒑𝒑 𝑡𝑡+1

• 𝜇𝜇 is a damping parameter, and should satisfying 0 ≤ 𝜇𝜇 ≤  1 
• 𝜇𝜇 should be slightly less than 1 (e.g. 0.9 or 0.99)



Gradient descent with momentum
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Moves faster on gentler slopes

Reduces oscillations with iterations on steeper slopes



Modifying learning rate
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 Ideal learning rate 𝛾𝛾 should be

 Not too big (loss function may blow up, oscillations around minima)

 Not too small (takes longer to converge)

𝜽𝜽 𝑡𝑡+1 ← 𝜽𝜽 𝑡𝑡 − 𝛾𝛾 ∇𝜽𝜽𝐽𝐽 𝜽𝜽 𝑡𝑡

Training
Loss

Epoch

very high learning rate

high learning rate

low learning rate

good learning rate



Modifying learning rate
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 One learning rate for all parameters is not good

 Can we tune the learning rate for each parameter directions separately?
 E.g. We may want to move fast in one parameter direction compared to other

 Consider this toy problem with two parameters, we want to
 Aggressively reduce learning rate in vertical direction
 Gradually reduce learning rate in horizontal direction

𝜃𝜃2

𝜃𝜃1

Idea: Decay the learning rate for parameters in proportion to their gradient magnitude history



GD with Adaptive Gradients (AdaGrad)
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Update rule for AdaGrad

• Get gradient
𝒈𝒈 𝑡𝑡 = ∇𝜽𝜽𝐽𝐽 𝜽𝜽 𝑡𝑡

• Accumulate past gradient magnitudes in a history vector
𝒔𝒔 𝑡𝑡+1 ← 𝒔𝒔 𝑡𝑡 + 𝒈𝒈 𝑡𝑡 2

• Perform parameter update

𝜽𝜽 𝑡𝑡+1 ← 𝜽𝜽 𝑡𝑡 −
𝛾𝛾

𝒔𝒔 𝑡𝑡+1 + 𝜖𝜖
𝒈𝒈 𝑡𝑡

 AdaGrad uses the magnitude of the gradient as a means of adjusting how quickly learning should occur

  Parameters with large gradient magnitudes are provided with a smaller learning rate

• NOTE: The squaring and update operation is applied elementwise

• 𝜖𝜖 is a small additive constant 
10−8  that ensures that we do not 

divide by 0 

• The squaring operation gets rid of 
signs (directions) of the gradients 
accumulated, hence we keep the 
magnitudes of gradients



Problems with AdaGrad
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 However, Adagrad decays the learning rate very aggressively (since it accumulates all past gradient magnitudes
and the denominator grows)

 As a result, during later epochs, some of the parameters will start receiving very small updates because of the 
decayed learning rate

 How can we prevent rapid growth of the denominator?

 Let’s look at RMSProp

𝜃𝜃2

𝜃𝜃1



Root Mean Square Propagation (RMSProp)
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Update rule for RMSProp

• Get gradient
𝒈𝒈 𝑡𝑡 = ∇𝜽𝜽𝐽𝐽 𝜽𝜽 𝑡𝑡

• Accumulate moving average over the history vector
𝒔𝒔 𝑡𝑡+1 ← 𝛽𝛽𝒔𝒔 𝑡𝑡 + (1 − 𝛽𝛽) 𝒈𝒈 𝑡𝑡 2

• Perform parameter update

𝜽𝜽 𝑡𝑡+1 ← 𝜽𝜽 𝑡𝑡 −
𝛾𝛾

𝒔𝒔 𝑡𝑡+1 + 𝜖𝜖
𝒈𝒈 𝑡𝑡

𝒔𝒔 𝑡𝑡+1 = (1 − 𝛽𝛽) 𝒈𝒈 𝑡𝑡 2
+ 𝛽𝛽 𝒈𝒈 𝑡𝑡−1 2

+ 𝛽𝛽2 𝒈𝒈 𝑡𝑡−2 2
+ ⋯

Trick: Focus more on the recent past
𝜃𝜃2

𝜃𝜃1



Adaptive Moment Estimation (ADAM)
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• Do everything that RMSProp does to solve the decay problem of Adagrad

• Plus use momentum based on a cumulative history of the gradients

• ADAM = RMSProp + Momentum 

Idea

• Get gradient
𝒈𝒈 𝑡𝑡 = ∇𝜽𝜽𝐽𝐽 𝜽𝜽 𝑡𝑡

• Compute momentum
𝒑𝒑 𝑡𝑡+1 ← 𝛽𝛽1𝒑𝒑 𝑡𝑡 + (1 − 𝛽𝛽1)𝒈𝒈 𝑡𝑡

• Accumulate past gradient step sizes in a history vector
𝒔𝒔 𝑡𝑡+1 ← 𝛽𝛽2𝒔𝒔 𝑡𝑡 + (1 − 𝛽𝛽2) 𝒈𝒈 𝑡𝑡 2

• Perform parameter update

𝜽𝜽 𝑡𝑡+1 ← 𝜽𝜽 𝑡𝑡 −
𝛾𝛾

𝒔𝒔 𝑡𝑡+1 + 𝜖𝜖
𝒑𝒑 𝑡𝑡+1
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