
APL 405: Machine Learning in Mechanics

Lecture 12: Parameter Optimization

by

Rajdip Nayek
Assistant Professor,

Applied Mechanics Department,
IIT Delhi

Instructor email: rajdipn@am.iitd.ac.in

Recap

2

• We looked at different types of loss functions for regression and classification

• Learning the parameters of a chosen parametric model often requires minimizing an appropriate loss funciton

• An ML engineer therefore needs to be familiar with some strategies to solve optimization problems

• In this lecture, we will introduce some ideas behind some of the optimization methods used in ML

Optimization in Machine Learning (ML)

3

 Optimization → Finding the minimum or maximum of an objective function

 A maximization problem can be formulated as a minimization problem

�𝜽𝜽 = argmax
𝜽𝜽

𝐽𝐽 𝜽𝜽 = argmin
𝜽𝜽

−𝐽𝐽 𝜽𝜽

 So we will limit ourselves to minimization problems only

 Optimization in ML is primarily used in two ways:

 Training a model by minimizing the cost function w.r.t. the model parameters

 Objective function : 𝐽𝐽 𝜽𝜽

 Optimization variable: 𝜽𝜽

 Tuning hyperparameters, such as the regularization parameter 𝜆𝜆

 Objective function : 𝐸𝐸hold−out
 Optimization variable: Hyperparameters (e.g. 𝜆𝜆)

Convex functions

4

 An important class of objective functions are convex functions

 Optimization is much easier for convex objective functions, and it is a good idea to consider whether a non-
convex optimization can be reformulated into a convex problem (but it is not always possible)

 Convex functions have unique minimum and no other local minima

 Examples of convex functions are cost functions for logistic regression and linear regression

 However, most problems in ML do not lead to convex functions

Convex functions

5

 An important class of objective functions are convex functions

 Convex functions are functions such that a straight line between any two points of the function lie above the
function

 The function 𝑓𝑓 is a convex function if for all 𝑥𝑥, 𝑦𝑦 in the domain convex function of 𝑓𝑓, and for any scalar 𝜃𝜃 with
0 ≤ 𝜙𝜙 ≤ 1, we have

𝑓𝑓 𝜙𝜙𝑥𝑥 + 1 − 𝜙𝜙 𝑦𝑦 ≤ 𝜙𝜙𝜙𝜙 𝑥𝑥 + (1 − 𝜙𝜙)𝑓𝑓(𝑦𝑦)

 Furthermore, if 𝑓𝑓 is a differentiable function, then we can specify convexity in terms of gradient ∇𝑥𝑥𝑓𝑓(𝑥𝑥)

𝑓𝑓 𝑦𝑦 ≥ 𝑓𝑓 𝑥𝑥 + ∇𝑥𝑥𝑓𝑓 𝑥𝑥 ⋅ (𝑦𝑦 − 𝑥𝑥)

 If we further know that a function 𝑓𝑓(𝑥𝑥) is twice differentiable, that is, the Hessian (double derivative) exists for
all values in the domain of 𝑥𝑥, then the function 𝑓𝑓(𝑥𝑥) is convex if and only if ∇𝑥𝑥2𝑓𝑓(𝑥𝑥) is positive semidefinite

Gradient of a cost function

6

 Training examples: 𝐱𝐱1, 𝑦𝑦1 , 𝐱𝐱2, 𝑦𝑦2 ,⋯ , 𝐱𝐱𝑁𝑁, 𝑦𝑦𝑁𝑁

 Let’s say the chosen model be: 𝑦𝑦 = 𝑓𝑓𝜽𝜽 𝒙𝒙

 Cost function → Average over individual training losses

𝐽𝐽 𝜽𝜽 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝐿𝐿 𝑦𝑦𝑖𝑖, 𝑓𝑓𝜽𝜽 𝐱𝐱𝑖𝑖

 Gradient of loss function w.r.t. parameter 𝜽𝜽

∇𝜽𝜽𝐽𝐽 𝜽𝜽 = ∇𝜽𝜽
1
𝑁𝑁�

𝑖𝑖=1

𝑁𝑁

𝐿𝐿 𝑦𝑦𝑖𝑖, 𝑓𝑓𝜽𝜽 𝐱𝐱𝑖𝑖

∇𝜽𝜽𝐽𝐽 𝜽𝜽 =
1
𝑁𝑁�

𝑖𝑖=1

𝑁𝑁

∇𝜽𝜽𝐿𝐿 𝑖𝑖

Note: 𝜽𝜽 would represent
hyperparameters in the case
of hyperparameter
optimization

Gradient Descent

7

 Gradient of loss function w.r.t. parameter 𝜽𝜽

 ∇𝜽𝜽𝐽𝐽 𝜽𝜽 has the same dimension as 𝜽𝜽

 ∇𝜽𝜽𝐽𝐽 𝜽𝜽 describes the direction in which 𝐽𝐽(𝜽𝜽) increases. Therefore, −∇𝜽𝜽𝐽𝐽 𝜽𝜽 describes the direction in
which 𝐽𝐽(𝜽𝜽) decreases

 Taking a (small) step in the direction of the negative gradient will reduce the value of cost function

𝐽𝐽 𝜽𝜽 − 𝛾𝛾∇𝜽𝜽𝐽𝐽 𝜽𝜽 ≤ 𝐽𝐽 𝜽𝜽 for some 𝛾𝛾 > 0

 This suggests that if we have 𝜽𝜽(𝑡𝑡) and want to select 𝜽𝜽(𝑡𝑡+1) such that 𝐽𝐽 𝜽𝜽(𝑡𝑡+1) ≤ 𝐽𝐽 𝜽𝜽(𝑡𝑡) , we should

∇𝜽𝜽𝐽𝐽 𝜽𝜽 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

∇𝜽𝜽𝐿𝐿 𝑖𝑖

Update 𝜽𝜽(𝑡𝑡+1) = 𝜽𝜽(𝑡𝑡) − 𝛾𝛾∇𝜽𝜽𝐽𝐽 𝜽𝜽(𝑡𝑡)
with some 𝛾𝛾 > 0 𝛾𝛾 is called the learning rate

GD is a local optimizer, there is no guarantee that it will find the global minimum

Batch gradient descent (Batch GD)

8

 Specify a learning rate, compute the total gradient ∇𝜽𝜽𝐽𝐽 𝜽𝜽 by averaging over all individual loss function gradients
for every training example, and then update the parameters 𝜽𝜽

 The algorithm goes over the entire data once before updating the parameters

 This is known as batch gradient descent (BGD), since we treat the entire training set as a batch

• Pros: There is no approximation in gradient calculation. Each update
step guarantees that the loss will decrease, if 𝛾𝛾 is small enough

• Cons: However, Batch GD can be very time-consuming for a large
datasets (very large 𝑁𝑁), due the summation over 𝑁𝑁 datapoints

∇𝜽𝜽𝐽𝐽 𝜽𝜽 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

∇𝜽𝜽𝐿𝐿 𝑖𝑖 Update 𝜽𝜽(𝑡𝑡+1) = 𝜽𝜽(𝑡𝑡) − 𝛾𝛾∇𝜽𝜽𝐽𝐽 𝜽𝜽(𝑡𝑡)
with some 𝛾𝛾 > 0

Batch gradient descent (Batch GD)

9

∇𝜽𝜽𝐽𝐽 𝜽𝜽 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

∇𝜽𝜽𝐿𝐿 𝑖𝑖 Update 𝜽𝜽(𝑡𝑡+1) = 𝜽𝜽(𝑡𝑡) − 𝛾𝛾∇𝜽𝜽𝐽𝐽 𝜽𝜽(𝑡𝑡)
with some 𝛾𝛾 > 0

 Batch gradient descent treat the entire training set as a single batch

 Updates the parameter vector after each full pass (epoch) over the entire dataset

Stochastic gradient descent (SGD)

10

 When 𝑁𝑁 is very large, the summation can involve summing a many terms

 Also, it can be an issue to keep all data points in the computer memory at the same time

 Subsampling a small set from the full training set might be more useful

 In SGD, one random samples (without replacement) a training pair 𝐱𝐱𝑖𝑖, 𝑦𝑦𝑖𝑖 from the full training dataset, and

• Pros: SGD can make significant progress before it has even looked at the entire
data!

• Cons: It uses an approximate estimate of gradient. There is no guarantee that
each step will decrease the loss

∇𝜽𝜽𝐽𝐽 𝜽𝜽 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

∇𝜽𝜽𝐿𝐿 𝑖𝑖

Updates 𝜽𝜽(𝑡𝑡+1) = 𝜽𝜽(𝑡𝑡) − 𝛾𝛾∇𝜽𝜽𝐿𝐿 𝑖𝑖 𝜽𝜽(𝑡𝑡)
with some 𝛾𝛾 > 0

Update 𝜽𝜽(𝑡𝑡+1) = 𝜽𝜽(𝑡𝑡) − 𝛾𝛾∇𝜽𝜽𝐽𝐽 𝜽𝜽(𝑡𝑡)
with some 𝛾𝛾 > 0

Stochastic gradient descent (SGD)

11

 We see many fluctuations. Why ? Because we are making greedy decisions

 Each data point is trying to push the parameters in a direction most favorable to it (without being aware of how
the parameter update affects other points)

 A parameter update which is locally favorable to one point may harm other points (its almost as if the data points
are competing with each other)

 There is no guarantee that each local greedy move will reduce the global error

• Can we reduce the oscillations by improving our stochastic estimates of the
gradient (currently estimated from just 1 data point at a time)?

• Yes, let’s look at mini-batch SGD

Mini-batch gradient descent

12

• Compute the gradients on a medium-sized set of training examples, called a mini-batch

• Note that the algorithm updates the parameters after it sees a batch size 𝐵𝐵 number of data points

• The stochastic estimates of gradients here are slightly better and less noisy

• Batch size = 1 leads to SGD! Typical batch sizes are 64, 128, 256

Performance of mini-batch gradient descent

13

The mini-batch size B is a hyperparameter that needs to be set

• Large batches: converge in fewer parameter updates because each stochastic gradient is less noisy

• Small batches: perform more parameter updates because each one requires less computation

Things to remember

14

 𝑁𝑁 is the total number of training examples

 𝐵𝐵 is the mini batch size

 1 epoch = one pass over the entire data

 1 iteration = one update step of the parameters

Algorithm Batch size Number of iterations
in 1 epoch

Batch GD 𝑁𝑁 1

SGD 1 𝑁𝑁

Mini-batch GD 𝐵𝐵 ~ �𝑁𝑁 𝐵𝐵

Learning rate

15

 Learning rate 𝛾𝛾 determines how big the 𝜽𝜽-step to take at each iteration

 In practice we do not know what learning rate 𝛾𝛾 to choose

 𝛾𝛾 is usually selected by the user, or it could be viewed as a hyperparameter

∇𝜽𝜽𝐽𝐽 𝜽𝜽 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

∇𝜽𝜽𝐿𝐿 𝑖𝑖 Update 𝜽𝜽(𝑡𝑡+1) = 𝜽𝜽(𝑡𝑡) − 𝛾𝛾∇𝜽𝜽𝐽𝐽 𝜽𝜽(𝑡𝑡)
with some 𝛾𝛾 > 0

Different modifications to Gradient Descent

16

 Different modifications that can be applied to GD, SGD or mini-batch GD to improve convergence to a solution
(possibly a local minimum)

 Two lines of improvements to traditional GD (or SGD or mini-batch GD)

𝜽𝜽 𝑡𝑡+1 ← 𝜽𝜽 𝑡𝑡 − 𝛾𝛾 ∇𝜽𝜽𝐽𝐽 𝜽𝜽 𝑡𝑡

 We will demonstrate these modifications on GD, but they are equally applicable to SGD and mini-batch GD as well

Adaptively modify the gradients
to accelerate learning

Adaptively modify the learning rate
to prevent end oscillations

• Momentum-based gradients • AdaGrad
• RMSProp

ADAM

Momentum-based gradients

17

Intuition

 If you are repeatedly being asked to move in the same direction, then you should gain some confidence and start
taking bigger steps in that direction

 If you move back-and-forth in different directions (i.e oscillations), then you should take smaller steps in the
oscillatory directions

Slow learning along gentle slopes,
many steps taken to converge

https://distill.pub/2017/momentum/

Oscillations across steep slopes

Gradient descent with momentum

18

 Can we accelerate learning by looking at the past behavior? Yes, use momentum

 If you are repeatedly being asked to move in the same direction, then you should gain some confidence and start
taking bigger steps in that direction

 If you move back-and-forth in different directions (i.e., oscillations), then you should take smaller steps in the
oscillatory directions

 Gain momentum by looking at the history of past gradients

• Compute momentum
𝒑𝒑 𝑡𝑡+1 ← 𝜇𝜇𝒑𝒑 𝑡𝑡 + 𝛾𝛾∇𝜽𝜽𝐽𝐽 𝜽𝜽 𝑡𝑡

• Perform parameter update
𝜽𝜽 𝑡𝑡+1 ← 𝜽𝜽 𝑡𝑡 − 𝒑𝒑 𝑡𝑡+1

Update rule
−𝛾𝛾∇𝜽𝜽𝐽𝐽 𝜽𝜽 𝑡𝑡

−𝜇𝜇𝒑𝒑 𝑡𝑡

𝜽𝜽 𝑡𝑡

𝜽𝜽 𝑡𝑡+1

−𝒑𝒑 𝑡𝑡+1

• 𝜇𝜇 is a damping parameter, and should satisfying 0 ≤ 𝜇𝜇 ≤ 1
• 𝜇𝜇 should be slightly less than 1 (e.g. 0.9 or 0.99)

Gradient descent with momentum

19

Moves faster on gentler slopes

Reduces oscillations with iterations on steeper slopes

Modifying learning rate

20

 Ideal learning rate 𝛾𝛾 should be

 Not too big (loss function may blow up, oscillations around minima)

 Not too small (takes longer to converge)

𝜽𝜽 𝑡𝑡+1 ← 𝜽𝜽 𝑡𝑡 − 𝛾𝛾 ∇𝜽𝜽𝐽𝐽 𝜽𝜽 𝑡𝑡

Training
Loss

Epoch

very high learning rate

high learning rate

low learning rate

good learning rate

Modifying learning rate

21

 One learning rate for all parameters is not good

 Can we tune the learning rate for each parameter directions separately?
 E.g. We may want to move fast in one parameter direction compared to other

 Consider this toy problem with two parameters, we want to
 Aggressively reduce learning rate in vertical direction
 Gradually reduce learning rate in horizontal direction

𝜃𝜃2

𝜃𝜃1

Idea: Decay the learning rate for parameters in proportion to their gradient magnitude history

GD with Adaptive Gradients (AdaGrad)

22

Update rule for AdaGrad

• Get gradient
𝒈𝒈 𝑡𝑡 = ∇𝜽𝜽𝐽𝐽 𝜽𝜽 𝑡𝑡

• Accumulate past gradient magnitudes in a history vector
𝒔𝒔 𝑡𝑡+1 ← 𝒔𝒔 𝑡𝑡 + 𝒈𝒈 𝑡𝑡 2

• Perform parameter update

𝜽𝜽 𝑡𝑡+1 ← 𝜽𝜽 𝑡𝑡 −
𝛾𝛾

𝒔𝒔 𝑡𝑡+1 + 𝜖𝜖
𝒈𝒈 𝑡𝑡

 AdaGrad uses the magnitude of the gradient as a means of adjusting how quickly learning should occur

 Parameters with large gradient magnitudes are provided with a smaller learning rate

• NOTE: The squaring and update operation is applied elementwise

• 𝜖𝜖 is a small additive constant
10−8 that ensures that we do not

divide by 0

• The squaring operation gets rid of
signs (directions) of the gradients
accumulated, hence we keep the
magnitudes of gradients

Problems with AdaGrad

23

 However, Adagrad decays the learning rate very aggressively (since it accumulates all past gradient magnitudes
and the denominator grows)

 As a result, during later epochs, some of the parameters will start receiving very small updates because of the
decayed learning rate

 How can we prevent rapid growth of the denominator?

 Let’s look at RMSProp

𝜃𝜃2

𝜃𝜃1

Root Mean Square Propagation (RMSProp)

24

Update rule for RMSProp

• Get gradient
𝒈𝒈 𝑡𝑡 = ∇𝜽𝜽𝐽𝐽 𝜽𝜽 𝑡𝑡

• Accumulate moving average over the history vector
𝒔𝒔 𝑡𝑡+1 ← 𝛽𝛽𝒔𝒔 𝑡𝑡 + (1 − 𝛽𝛽) 𝒈𝒈 𝑡𝑡 2

• Perform parameter update

𝜽𝜽 𝑡𝑡+1 ← 𝜽𝜽 𝑡𝑡 −
𝛾𝛾

𝒔𝒔 𝑡𝑡+1 + 𝜖𝜖
𝒈𝒈 𝑡𝑡

𝒔𝒔 𝑡𝑡+1 = (1 − 𝛽𝛽) 𝒈𝒈 𝑡𝑡 2
+ 𝛽𝛽 𝒈𝒈 𝑡𝑡−1 2

+ 𝛽𝛽2 𝒈𝒈 𝑡𝑡−2 2
+ ⋯

Trick: Focus more on the recent past
𝜃𝜃2

𝜃𝜃1

Adaptive Moment Estimation (ADAM)

25

• Do everything that RMSProp does to solve the decay problem of Adagrad

• Plus use momentum based on a cumulative history of the gradients

• ADAM = RMSProp + Momentum

Idea

• Get gradient
𝒈𝒈 𝑡𝑡 = ∇𝜽𝜽𝐽𝐽 𝜽𝜽 𝑡𝑡

• Compute momentum
𝒑𝒑 𝑡𝑡+1 ← 𝛽𝛽1𝒑𝒑 𝑡𝑡 + (1 − 𝛽𝛽1)𝒈𝒈 𝑡𝑡

• Accumulate past gradient step sizes in a history vector
𝒔𝒔 𝑡𝑡+1 ← 𝛽𝛽2𝒔𝒔 𝑡𝑡 + (1 − 𝛽𝛽2) 𝒈𝒈 𝑡𝑡 2

• Perform parameter update

𝜽𝜽 𝑡𝑡+1 ← 𝜽𝜽 𝑡𝑡 −
𝛾𝛾

𝒔𝒔 𝑡𝑡+1 + 𝜖𝜖
𝒑𝒑 𝑡𝑡+1

	APL 405: Machine Learning in Mechanics��Lecture 12: Parameter Optimization
	Recap
	Optimization in Machine Learning (ML)
	Convex functions
	Convex functions
	Gradient of a cost function
	Gradient Descent
	Batch gradient descent (Batch GD)
	Batch gradient descent (Batch GD)
	Stochastic gradient descent (SGD)
	Stochastic gradient descent (SGD)
	Mini-batch gradient descent
	Performance of mini-batch gradient descent
	Things to remember
	Learning rate
	Different modifications to Gradient Descent
	Momentum-based gradients
	Gradient descent with momentum
	Gradient descent with momentum
	Modifying learning rate
	Modifying learning rate
	GD with Adaptive Gradients (AdaGrad)
	Problems with AdaGrad
	Root Mean Square Propagation (RMSProp)
	Adaptive Moment Estimation (ADAM)

