APL405: Machine Learning for Mechanics Winter 2024

Homework 3

Deadline: Thursday, Apr 19th, at 11:59pm.

Submission: In Teams. DO NOT submit any zipped files

o Put all your solutions and answers to all questions as a PDF file titled hw3_writeup.pdf.
You can produce the file however you like (e.g. LATEX, Microsoft Word, scanner), as long
as it is readable.

e Your final code for Question 2 should be submitted as python notebook .ipynb file.

Late Submission: 50% of the marks will be deducted for any submission beyond the deadline.
No submissions will be accepted after two days past the deadline.

Collaboration: Homeworks are individual work. Please refrain from copying.

1. [2 marks]| Squared hinge loss form of SVM In class, we studied Soft-margin SVM where
the loss function in primal form had regularization of the form C' YN, &;. Now, consider the
following variant of SVM, where we use squared slack variables.
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Derive to show that the dual of the above problem is given by the following minimization:
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2. [3 marks] SVM implementation in primal form For a linear kernel, the primal formu-
lation for SVM can also be written using the hinge loss as:
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You will now optimize the above unconstrained formulation of SVM using Stochastic Sub-
Gradient Descent (SSGD). In this problem, you will be using a binary (two-class) version
of MNIST dataset. The data mnist.mat can be downloaded from the course website. The
mnist.mat file contains the train, test and validation datasets. Also, use the code template
provided on the course website.
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We slightly modify the above equation and use the following formulation in this problem:

N
~ o1 T A 2
0= arggrrelIlR% N ;maX(O, 1—y0" x;) + §||Q||2,

This is only done to simplify calculations. You will optimize this objective using SSGD. In
SSGD, we randomly sample a training data point in each iteration and update the parameter
vector by taking a small step along the direction of negative “sub-gradient” of the lossﬂ The
SSGD algorithm is given by

e Initialize the weight vector 8 = 0.

e Forj=1,....T
* Choose index i; € {1,..., N} uniformly at random
* Set n = ﬁ
*if yijQTL-j < 1 then:
— Set 0 < (1 — )8 + neyi; i,
else:

— Set 0« (1 —An)@
e Return 6

Note that we don’t consider the bias/intercept term in this problem.

Tasks:

a rite up a function train(theta0, Xtrain, ytrain, tot_iters, lamda) in the _run.ipyn
Write up a functi in(theta0d, Xtrain, ytrai i lamda) in the SVM i pynb
notebook file.

o The function train(thetaO, Xtrain, ytrain, tot_iters, lamda) runsthe SSGD
algorithm
o It takes in an initial weight vector theta0, matrix of covariates Xtrain, a vector of
labels ytrain.
e tot_iters is the number of iterations of SSGD
e lamda is the hyperparameter in the objective function.
e The function outputs the final learned weight vector theta.
(b) Perform training and see the classification accuracy (in percentage) on training and test
sets.
(c) Use validation dataset for picking a good lamda(\) from the set {1000, 100, 10,

1, 0.1}. Plot a graph of validation error vs lamda values and include it in the writeup
pdf.

(d) Report the accuracy numbers on train and test datasets obtained using the best lambda,
after running SSGD for 200 epochs (i.e., tot__iters = 200N). Generate the training
accuracy vs. training time and test accuracy vs. training time plots, and include them
in the writeup pdf.

1Sub-gradient generalizes the notion of gradient to non-differentiable functions
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3. [2 marks] Bagging: It was told in class that bagging with B models reduces variance but
does not change the bias of the ensemble. Prove it mathematically using the concept of
bias-variance decomposition.

4. [3 marks] GMM with EM derivation: For the case of unsupervised learning using GMM,
we try to model the input distribution p(z) using a family of Gaussian distributions, whose
pdf look as follows:

GMM(z Z N (2] 1,2,

where N ( |, ;) represent a Gaussian pdf with mean p and covariance ¥, and {7,..., 7}
are prior weights such that
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All the parameters are stacked into § = { Bys B Tm The EM algorithm for learning
! — m

=1
AN
a GMM (for unsupervised case) from training data {g( } is outlined below:

o Initialize 0: p_, ¥ ., and mp, for all m € {1,..., M}
e Repeat the following until convergence:

(a) Expectation step (E-step):
wﬁ,? < Prob (g(i) € cluster m | 6, f“)

(b) Maximization step (M-step):
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Consider a simplified scenario where we assume that the covariances of the Gaussian com-
ponents are the same and equal, i.e., X = X. Assume that you have got wﬁ,;) is the result
of the E-step at the mth iteration, and albo an estimate g from the current M-step. Next
you need to update the value of ¥. What would be the update formula for X7 Show your

derivation.

Hint: Work with precision matrix A = ;‘1 for easier derivation.



