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Why do we care about probability? 

Uncertainty arises through: 

❑Noisy measurements 

❑Variability between samples

❑Finite size of data sets

Probability provides a consistent framework for the quantification 
and manipulation of uncertainty.  



Sample Space

Sample space Ω is the set of all possible outcomes of an experiment.

Observations ω ∈ Ω are points in the space also called sample 
outcomes, realizations, or elements.

Events E ⊂ Ω are subsets of the sample space.



Sample Space

Example: Flip a coin twice: 

Sample space includes all possible outcomes 

Ω = {HH, HT, T H, T T} 

Observation is any single element of the sample space 

ω = HT ∈ Ω 

Event is a subset of the sample space (eg. the event where both flips 
have the same outcome) 

E = {HH, T T} ⊂ Ω 



Probability

The probability of an event E, P(E), satisfies three axioms:

1. P(E) ≥ 0 for every E

2. P(Ω) = 1

3. If E1, E2, . . . are disjoint then

𝑃(ራ

𝑖=1

∞

𝐸𝑖 ) = ෍

𝑖=1

∞

𝑃(𝐸𝑖)



Joint and Conditional Probabilities

Joint Probability of A and B is denoted P(A, B).

Conditional Probability of A given B is denoted P(A|B).



Conditional Example

Probability of passing the midterm is 60% and probability of passing 
both the final and the midterm is 45%. 

What is the probability of passing the final given the student passed 
the midterm?

𝑃(𝐹|𝑀) = 𝑃(𝑀, 𝐹)/𝑃(𝑀)

=
0.45

0.60
= 0.75



Independence

Events A and B are independent if P(A, B) = P(A)P(B).



Independence

Suppose you have 2 coins. Coin 1 always comes up Heads and Coin 2 
always comes up Tails. You close your eyes, pick a coin and toss it. Then 
you replace it, pick again and toss again.

▪ Independent: Before seeing the result of any toss, you wonder about 
2 events; A: first toss is Head, B: second toss is Head.

P(A, B) = 0.5 × 0.5 = P(A)P(B)

▪Not Independent: Now you wonder about the same events A and B 
but you toss the same coin twice.

P(A, B) = 0.5 ≠ P(A)P(B)



Conditional Independence

Events A and B are conditionally independent given C if

𝑃 𝐴, 𝐵 𝐶 = 𝑃 𝐵 𝐶 𝑃 𝐴 𝐶

Consider two coins: A regular coin and a coin which always outputs 
heads.

A = The first toss is heads,
B = The second toss is heads,
C = The regular coin is used, 
D = The biased coin is used.

Then A and B are conditionally independent given C and given D



Conditional Dependence

Events A and B are conditionally independent given C if

𝑃(𝐴, 𝐵|𝐶) = 𝑃(𝐴|𝐶)𝑃(𝐵|𝐶)

Consider a coin which outputs heads if the first toss was heads, and 
tails otherwise.

A = The first toss is heads; 

B = The second toss is heads; 

E = The eventually biased coin is used

Then A and B are conditionally dependent given E.



Marginalization and Law of Total Probability

Law of Total Probability

𝑃(𝐴) =෍

𝐵

𝑃(𝐴, 𝐵) =෍

𝐵

𝑃(𝐴|𝐵)𝑃(𝐵)



Bayes’ Rule

Bayes’ Rule:

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)

𝑃(𝜃|𝑥) =
𝑃(𝑥|𝜃)𝑃(𝜃)

𝑃(𝑥)

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝑃𝑟𝑖𝑜𝑟

𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒
𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝑃𝑟𝑖𝑜𝑟



Bayes’ Example

Suppose you have tested positive for a disease. What is the probability 
you actually have the disease?

This depends on the prior probability of the disease:

➢𝑃 𝑇 = 1 𝐷 = 1 = 0.95 (likelihood)

➢ 𝑃 𝑇 = 1 𝐷 = 0 = 0.1 (likelihood)

➢ 𝑃(𝐷 = 1) = 0.1 (prior)

So 𝑃 𝐷 = 1 𝑇 = 1 = ? ?



Bayes’ Example



Random Variable

How do we connect sample spaces and events to data?

A random variable is a mapping which assigns a real number X(ω) to each 
observed outcome ω ∈ Ω.

For example, let’s flip a coin 10 times. X(ω) counts the number of Heads we 
observe in our sequence. If ω = HHT HT HHT HT then X(ω) = 6. We often 
shorten this and refer to the random variable X. 



Probability Distribution Statistics 

Expectation: First Moment, µ

𝐸𝑥 𝑥 = σ𝑖=1
∞ 𝑥𝑖𝑝(𝑥𝑖) (univariate discrete r.v.)

𝐸𝑥 𝑥 = ∞−׬
∞

𝑥𝑝(𝑥)𝑑𝑥 (univariate continuous r.v)

Variance: Second (central) Moment, 𝜎2

𝑉𝑎𝑟 𝑥 = න
−∞

∞

𝑥 − µ 2 𝑝(𝑥)𝑑𝑥

= 𝐸𝑥 𝑥 − µ 2

= 𝐸𝑥 [𝑥
2] − 𝐸𝑥[𝑥]

2



Expectation as Monte Carlo average 

We consider n-samples of a random variable X’s, (x1,….,xn), and 
compute the mean of these over the number of samples, then would 
have the Monte Carlo estimate of 𝐸 𝑥 as

෤𝑥 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖



Expectation Practice

• What is the expected value of a fair die?

• X = value of roll

𝐸𝑋 𝑋 = ෍

𝑎∈{1,2,3,4,5,6}

1

6
𝑎

=
1

6
෍

𝑎=1

𝑎

= 21/6 = 7/2



Linearity of Expectations

There are two powerful properties regarding expectations. 

❑𝐸[𝑋 + 𝑌 ] = 𝐸[𝑋] + 𝐸[𝑌 ].This holds even if the random 
variables are dependent. 

❑𝐸[𝑐𝑋] = 𝑐𝐸[𝑋], where c is a constant.

Note we cannot say anything in general about 𝐸[𝑋𝑌 ].



Linearity of Expectation Practice

What is the expected value of the sum of two dice? 

X1 = value of roll 1 

X2 = value of roll 2

𝐸 𝑋1+ 𝑋2 = 𝐸 𝑋1 + 𝐸 𝑋2 =
7

2
+
7

2
= 7

Else we compute like 2 ∗
1

36
+ 3 ∗

2

36
+ …



Linearity of Expectation Practice 2

Suppose there are n students in class, and they each complete an 
assignment. We hand back assignments randomly. What is the 
expected number of students that receive the correct assignment?

When n = 3? In general?

X = Number of students that get their assignment back

Xi = Student i gets their assignment back
𝐸[𝑋] = 𝐸[𝑋1 + 𝑋2+ . . . + 𝑋𝑛]

= 𝐸 𝑋1 + 𝐸 𝑋2 + . . . + 𝐸 𝑋𝑛

=
1

𝑛
∗ 𝑛 = 1



Variances

Knowing the expectation can only tell us so much. We have another 
quantity used to describe how far off we are from the expected value.

It is defined as follows for a random variable X with expectation as µ,

𝐸 𝑋 − µ 2 = 𝐸 𝑋2 − 2µ𝑋 + µ2

= 𝐸 𝑋2 − 𝐸 2µ𝑋 + 𝐸 µ2

= 𝐸 𝑋2 − 2µ𝐸 𝑋 + 𝐸 µ2

= 𝐸[𝑋2] − µ2



Variance Properties

Constants get squared:
𝑉𝑎𝑟[𝑐𝑋] = 𝑐2 𝑉𝑎𝑟[𝑋]

For independent random variables X and Y , we have
𝐸[𝑋𝑌 ] = 𝐸[𝑋]𝐸[𝑌 ]

and 
𝑉𝑎𝑟 𝑋 + 𝑌 = 𝑉𝑎𝑟 𝑋 + 𝑉𝑎𝑟[𝑌 ]



Variance Practice

Consider a particle that starts at position 0. At each time step, the 
particle moves one step to the left or one step to the right with equal 
probability. What is the variance of the particle at time step n?
𝑋 = 𝑋1 + 𝑋2+ . . . + 𝑋𝑛

Each Xi is 1 or -1 with equal probability
𝑉𝑎𝑟 𝑋𝑖 = 1

𝑉𝑎𝑟 𝑋 = σ𝑉𝑎𝑟 𝑋𝑖 = 𝑛

The expected squared distance from 0 is n.



Discrete and Continuous Random Variables

Discrete Random Variables

▪ Takes countably many values, e.g., number of heads

▪ Distribution defined by probability mass function (PMF).

▪ Marginalization: 𝑝 𝑥 = σ𝑦 𝑝(𝑥, 𝑦)

Continuous Random Variables

▪ Takes uncountably many values, e.g., time to complete task

▪ Distribution defined by probability density function (PDF)

▪Marginalization: 𝑝 𝑥 = 𝑦׬ 𝑝 𝑥, 𝑦 𝑑𝑦



I.I.D.

Random variables are said to be independent and identically 
distributed (i.i.d.) if they are sampled from the same probability 
distribution and are mutually independent. 

This is a common assumption for observations. For example, coin flips 
are assumed to be i.i.d.
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