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Recap of last lecture
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• We introduced the linear regression model, which is a parametric model, for solving the regression problem

• Now we will look at basic parametric modelling techniques, particularly

• Linear regression (covered in last lecture)

• Logistic regression

• Linear regression

• A loss-based perspective, using least squares error

• A statistical perspective based on maximum likelihood, where the log-likelihood function was used

• A closed form solution was derived

• One-hot encoding to handle categorical inputs 

• We will see that in logistic regression, we will not obtain a closed form solution



How to handle categorical input variables?
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▪ We had mentioned earlier that input variables 𝐱 can be numerical, catergorical, or mixed

▪ Assume that an input variable is categorical and takes only two classes, say A and B

▪ We can represent such an input variable 𝑥 using 1 and 0 

▪ For linear regression, the model effectively looks like

𝑦 = 𝜃0 + 𝜃1𝑥 + 𝜖 = ቊ
𝜃0 + 𝜖, if 𝐀
𝜃0 + 𝜃1 + 𝜖, if 𝐁

▪ If the input is a categorical variable with more than two classes, let’s say A, B, C, and D, use one-hot encoding

𝑥 = ቊ
0, if 𝐀
1, if 𝐁

𝐱 =

1
0
0
0

if A, 𝐱 =

0
1
0
0

if B,    𝐱 =

0
0
1
0

if C, 𝐱 =

0
0
0
1

if D



A statistical view of the Classification problem

▪ Classification → learn relationships between some input variables 𝐱 = 𝑥1 𝑥2 … 𝑥𝑝 𝑇 and a categorical output 𝑦

▪ The goal in classification is to take an input vector 𝐱 and to assign it to one of 𝑀 discrete classes 1,2… ,𝑀

▪ From a statistical perspective, classification amounts to predicting the conditional class probabilities

𝑝 𝑦 = 𝑚 𝐱 𝑦 → 1, 2, … ,𝑀

▪ 𝑝 𝑦 = 𝑚 𝐱 describes the probability for class 𝑚 given that we know the input 𝐱

▪ A probability over output 𝑦 implies the output label 𝑦 is a random variable (r.v.)

▪ We consider 𝑦 as a r.v. because the data (from real world) will always involve a certain amount of randomness (much like 
the output from linear regression that was probabilistic due to random error 𝜖)
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A statistical view of the Classification problem

▪ How to construct a classifier which can not only predict classes but also learn the class probabilities 𝑝 𝑦 | 𝐱 ?

▪ Consider the simplest case of binary classification 𝑀 = 2 and 𝑦 = −1 or 1

▪ In this binary classification case

▪ By the laws of probability,
𝑝 𝑦 = 1|𝐱 + 𝑝 𝑦 = −1|𝐱 = 1

▪ Since 𝑔 𝐱 is a model for a probability, it is natural to require that 0 ≤ 𝑔 𝐱 ≤ 1 for any 𝐱

▪ For a multi-class problem, the classifier should return a vector-valued function 𝒈 𝐱 , where

𝑝 𝑦 = 1|𝐱

𝑝 𝑦 = 2|𝐱
⋮

𝑝 𝑦 = 𝑀|𝐱

is modelled by 

𝑔1 𝐱

𝑔2 𝐱
⋮

𝑔𝑀 𝐱
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𝑝 𝑦 = 1|𝐱 will be modelled by 𝑔(𝐱)

𝑝 𝑦 = −1|𝐱 will be modelled by 1 − 𝑔(𝐱)

Since 𝒈 𝐱 models a probability vector, each 
element 𝑔𝑚 𝐱 ≥ 0 and σ𝑚=1

𝑀 𝑔𝑚 𝐱 = 1



Logistic Regression model for binary classification
▪ Logistic regression can be viewed as an extension of linear regression that does (binary) classification (instead of 

regression)

▪ We wish to learn a function 𝑔(𝐱) that approximates the conditional probability of the positive class, 𝑝 𝑦 = 1|𝐱

▪ Idea of Logisitic Regression: we start with the linear regression model which, without the noise term 𝜖

▪ Define logit, 𝑧 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 +⋯+ 𝜃𝑝𝑥𝑝 = 𝐱𝑇𝜽

▪ Logit takes values on the entire real line, but we need a function that returns a value in the interval 0, 1

▪ Squash the logit 𝑧 = 𝐱𝑇𝜽 into the interval 0, 1 by using the logistic function, ℎ 𝑧 =
𝑒𝑧

1+𝑒𝑧
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Logistic Regression

▪ Idea of Logisitic Regression: we start with the linear regression model which, without the noise term

▪ Define logit, 𝑧 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 +⋯+ 𝜃𝑝𝑥𝑝 = 𝐱𝑇𝜽

▪ Logit takes values on the entire real line, but we need a function that returns a value in the interval 0, 1

▪ Squash the logit 𝑧 = 𝐱𝑇𝜽 into the interval 0, 1 by using the logistic function ℎ 𝑧 =
𝑒𝑧

1+𝑒𝑧

▪ Recall that 𝑔 𝐱 was used to model for 𝑝 𝑦 = 1|𝐱

▪ Using the logistic function for 𝑔 𝐱 restricts the values between 0 and 1 and can be interpreted as a probability

𝑔 𝐱; 𝜽 =
𝑒𝐱

𝑇𝜽

1+𝑒𝐱
𝑇𝜽

▪ It implicitly means that a model for 𝑝 𝑦 = −1|𝐱 is

1 − 𝑔 𝐱; 𝜽 = 1 −
𝑒𝐱

𝑇𝜽

1 + 𝑒𝐱
𝑇𝜽

=
1

1 + 𝑒𝐱
𝑇𝜽

=
𝑒−𝐱

𝑇𝜽

1 + 𝑒−𝐱
𝑇𝜽
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Logistic Regression

▪ Logisitic Regression: Essentially linear regression appended with logistic function

▪ Logit, 𝑧 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 +⋯+ 𝜃𝑝𝑥𝑝 = 𝐱𝑇𝜽

▪ 𝑝 𝑦 = 1|𝐱; 𝜽 = 𝑔 𝐱; 𝜽 =
𝑒𝐱

𝑇𝜽

1+𝑒𝐱
𝑇𝜽
, 𝑝 𝑦 = −1|𝐱; 𝜽 = 1 − 𝑔 𝐱; 𝜽 =

𝑒−𝐱
𝑇𝜽

1+𝑒−𝐱
𝑇𝜽

▪ Logistic regression is a method for classification, not regression!

▪ The randomness in classification is statistically modelled by the class probability 𝑝 𝑦 = 𝑚|𝐱 , instead of additive noise 𝜖

▪ Like linear regression, logistic regression is also a parametric model, and we learn the parameters 𝜽 from training data
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Training binary classification model with Maximum Likelihood

▪ Logistic function is a nonlinear function 

▪ Therefore, a closed-form solution to logistic regression cannot be derived

▪ Maximum likelihood perspective of learning 𝜽 from training data 
𝜽 = argmax

𝜽
𝑝 𝒚 𝐗; 𝜽

▪ Similar to linear regression, we assume that the training data points are independent, and we consider the logarithm of 
the likelihood function for numerical reasons

𝜽 = argmax
𝜽

ln 𝑝 𝒚 𝐗; 𝜽 = argmax
𝜽


𝑖=1

𝑁

ln 𝑝 𝑦 𝑖 𝐱 𝑖 ; 𝜽 = argmin
𝜽


𝑖=1

𝑁

−ln 𝑝 𝑦 𝑖 𝐱 𝑖 ; 𝜽

▪ Note that 𝑝 𝑦 = 1 𝐱; 𝜽 is modelled using 𝑔 𝐱; 𝜽 which implies
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− ln𝑝 𝑦 𝑖 𝐱 𝑖 ; 𝜽 = ቐ
−ln𝑔 𝐱 𝑖 ; 𝜽 if 𝑦 𝑖 = 1

−ln 1 − 𝑔 𝐱 𝑖 ; 𝜽 if 𝑦 𝑖 = −1



Training binary classification model with Maximum Likelihood

▪ Assume that the training data points are independent, and we consider the logarithm of the likelihood function for 
numerical reasons

𝜽 = argmax
𝜽

ln 𝑝 𝒚 𝐗; 𝜽 = argmax
𝜽


𝑖=1

𝑁

ln 𝑝 𝑦 𝑖 𝐱 𝑖 ; 𝜽 = argmin
𝜽


𝑖=1

𝑁

−ln 𝑝 𝑦 𝑖 𝐱 𝑖 ; 𝜽

▪ 𝑝 𝑦 = 1 𝐱; 𝜽 is modelled using 𝑔 𝐱; 𝜽

▪ Cross entropy loss can be used for any binary classifier, not just logistic regression, that predicts class probabilities 𝑔 𝐱; 𝜽

▪ The corresponding cost function (or average loss function)

11

− ln𝑝 𝑦 𝑖 𝐱 𝑖 ; 𝜽 = ቐ
−ln𝑔 𝐱 𝑖 ; 𝜽 if 𝑦 𝑖 = 1

−ln 1 − 𝑔 𝐱 𝑖 ; 𝜽 if 𝑦 𝑖 = −1

Cross-entropy loss function, 𝐿 𝑦 𝑖 , 𝑔 𝐱 𝑖 ; 𝜽

𝐽 𝜽 =
1

𝑁


𝑖=1

𝑁

ቐ
−ln𝑔 𝐱 𝑖 ; 𝜽 if 𝑦 𝑖 = 1

−ln 1 − 𝑔 𝐱 𝑖 ; 𝜽 if 𝑦 𝑖 = −1



Training Logistic Regression model with Maximum Likelihood

▪ We can write the cost function in more detail for logistic regression

▪ Hence, we get the same expression in both cases and can write the cost function compactly as:

𝐽 𝜽 =
1

𝑁


𝑖=1

𝑁

ቐ
−ln𝑔 𝐱 𝑖 ; 𝜽 if 𝑦 𝑖 = 1

−ln 1 − 𝑔 𝐱 𝑖 ; 𝜽 if 𝑦 𝑖 = −1

=
1

𝑁


𝑖=1

𝑁

− ln
𝑒𝑦

𝑖 𝐱 𝑖 𝑇
𝜽

1 + 𝑒𝑦
𝑖 𝐱 𝑖 𝑇

𝜽
=
1

𝑁


𝑖=1

𝑁

− ln
1

1 + 𝑒−𝑦
𝑖 𝐱 𝑖 𝑇

𝜽
=
1

𝑁


𝑖=1

𝑁

ln 1 + 𝑒−𝑦
𝑖 𝐱 𝑖 𝑇

𝜽
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For 𝑦 𝑖 = 1,        𝑔 𝐱 𝑖 ; 𝜽 =
𝑒

𝐱 𝑖
𝑇
𝜽

1+𝑒
𝐱 𝑖

𝑇
𝜽
=

𝑒
𝑦 𝑖 𝐱 𝑖

𝑇
𝜽

1+𝑒
𝑦 𝑖 𝐱 𝑖

𝑇
𝜽

For 𝑦 𝑖 = −1,        1 − 𝑔 𝐱 𝑖 ; 𝜽 =
1

1+𝑒
𝐱 𝑖

𝑇
𝜽
=

𝑒
− 𝐱 𝑖

𝑇
𝜽

1+𝑒
− 𝐱 𝑖

𝑇
𝜽
=

𝑒
𝑦 𝑖 𝐱 𝑖

𝑇
𝜽

1+𝑒
𝑦 𝑖 𝐱 𝑖

𝑇
𝜽



Training Logistic Regression model with Maximum Likelihood

▪ Cost function in logistic regression is given by:

𝐽 𝜽 =
1

𝑁


𝑖=1

𝑁

ln 1 + 𝑒−𝑦
𝑖 𝐱 𝑖 𝑇

𝜽

▪ The logistic loss 𝐿 𝑦 𝑖 , 𝐱 𝑖 ; 𝜽 above is a special case of the cross-entropy loss

▪ Learning a logistic regression model thus amounts to solving the optimization problem:

𝜽 = argmin
𝜽

𝐽 𝜽 = argmin
𝜽

1

𝑁
σ𝑖=1
𝑁 ln 1 + 𝑒−𝑦

𝑖 𝐱 𝑖 𝑇
𝜽

▪ Contrary to linear regression with squared error loss, the above problem has no closed-form solution, so we have to use 
numerical optimization instead
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Logistic loss function, 𝐿 𝑦 𝑖 , 𝐱 𝑖 ; 𝜽



Predictions using Logistic Regresion

▪ Logistic regression predicts class probabilities for a test input 𝐱∗

▪ by first learning 𝜽 from training data, and 

▪ then computing 𝑔 𝐱∗ , which is the model for 𝑝 𝑦∗ = 1 𝐱∗

▪ However, sometimes we want to make a “hard” prediction for the test input 𝐱∗

▪ E.g., whether is ො𝑦 𝐱∗ = 1 or ො𝑦 𝐱∗ = −1 in binary classification?

▪ Recall, in 𝑘NN and decision trees, we made “hard” predictions

▪ To make hard predictions with logistic regression model, we add a final step, in which the predicted probabilities are 
turned into a class prediction

▪ The most common approach is to let ො𝑦 𝐱∗ be the most probable class ← the class having the highest probability

▪ For binary classification, we can express this as:

ො𝑦 𝐱∗ = ቊ
1 if 𝑔 𝐱∗ > 𝑟

−1 if 𝑔 𝐱∗ ≤ 𝑟
with decision threshold 𝑟 = 0.5 (why?) 

14

𝑟 = 0.5 minimises the so-called misclassification rate



Decision Boundaries of Logistic Regression

▪ Decision boundary  ← The point(s) where the prediction changes from from one class to another

▪ The decision boundary for binary classification can be computed by solving the equation
𝑔 𝐱 = 1 − 𝑔 𝐱 meaning 𝑝 𝑦 = 1|𝐱; 𝜽 = 𝑝(𝑦 = −1|𝒙; 𝜽)

▪ The solutions to this equation are points in the input space for which the two classes are predicted to be equally probable
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Grey plane is the decision boundary



Decision Boundaries of Logistic Regression

▪ The decision boundary for binary classification can be computed by solving the equation

𝑔 𝐱 = 1 − 𝑔 𝐱 meaning 𝑝 𝑦 = 1|𝐱; 𝜽 = 𝑝(𝑦 = −1|𝐱; 𝜽)

▪ The solutions to this equation are points in the input space for which the two classes are predicted to be equally probable

▪ For binary logistic regression, it means

𝑒𝐱
𝑇𝜽

1 + 𝑒𝐱
𝑇𝜽

=
1

1 + 𝑒𝐱
𝑇𝜽

⟺ 𝑒𝐱
𝑇𝜽 = 1 ⟺ 𝐱𝑇𝜽 = 0

▪ The equation 𝐱𝑇𝜽 = 0parameterises a (linear) hyperplane 

▪ Therefore, the decision boundaries in logistic regression always have the shape of a (linear) hyperplane
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Prediction and Decision Boundaries of Logistic Regression

▪ For binary classification, we can express this as:

ො𝑦 𝐱∗ = ቊ
1 if 𝑔 𝐱∗ > 𝑟

−1 if 𝑔 𝐱∗ ≤ 𝑟
with decision threshold 𝑟 = 0.5

▪ Choosing 𝑟 = 0.5 minimises the so-called misclassification rate

▪ The decision boundary for logistic regression lies at 𝐱𝑇𝜽 = 0

⟹ The sign of the expression 𝐱𝑇𝜽 determines if we are predicting the positive (1) or the negative (-1) class

▪ Compactly, one can write the test output prediction for a test input 𝐱∗ from a logistic regression as

ො𝑦 𝐱∗ = sign 𝐱∗𝑇𝜽
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Linear vs Non-linear classifiers

▪ A classifier whose decision boundaries are linear hyperplanes is a linear classifier

▪ Logistic regression is a linear classifier

▪ 𝑘NN and Decision Trees are non-linear classifiers

▪ Note that the term ‘linear’ has a different sense for linear regression and for linear classification

▪ Linear regression is a model which is linear in its parameters,

▪ Linear classifier is a model linear whose decision boundaries are linear
18

Linear classifier

𝑥1

𝑥2

Non-Linear classifier

𝑥1

𝑥2



Logistic Regression for more than two classes

▪ For the binary problem, we used the logistic function to design a model for 𝑔 𝐱

▪ 𝑔 𝐱 a scalar-valued function representing 𝑝 𝑦 = 1| 𝐱

▪ For a multi-class problem (𝑀 classes), the classifier should return a vector-valued function 𝒈 𝐱 , where

𝑝 𝑦 = 1|𝐱

𝑝 𝑦 = 2|𝐱
⋮

𝑝 𝑦 = 𝑀|𝐱

is modelled by 𝒈 𝐱 =

𝑔1 𝐱

𝑔2 𝐱
⋮

𝑔𝑀 𝐱

▪ For this purpose, we define 𝑀 different logits, 𝑧𝑚 = 𝜽𝑚 𝑇𝐱 , 𝑚 = 1,2, … ,𝑀

▪ The use the softmax function (a vector-valued generalization of logistic function) 
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Since 𝒈 𝐱 models a probability vector, each 
element 𝑔𝑚 𝐱 ≥ 0 and σ𝑚=1

𝑀 𝑔𝑚 𝐱 = 1

softmax 𝒛 ≜
1

σ𝑚=1
𝑀 𝑒𝑧𝑚

𝑒𝑧1

𝑒𝑧2

⋮
𝑒𝑧𝑀

• 𝒛 is an 𝑀-dimensional vector
• softmax 𝒛 also returns a vector of the same dimension
• By construction, the output vector always sums to 1, and each element 

is always ≥ 0



Multi-class Logistic Regression model

▪ We have now combined linear regression and softmax function to model multi-class probabilities

𝒈 𝒛 = softmax 𝒛 , where 𝒛 =

𝑧1
𝑧2
⋮
𝑧𝑀

=

𝜽1 𝑇𝐱

𝜽2 𝑇𝐱
⋮

𝜽𝑀 𝑇𝐱

▪ Equivalently, we can write out the individual class probabilities, that is, the elements of the vector 𝑔𝑚 𝐱

𝑔𝑚 𝐱 =
𝑒 𝜽𝑚 𝑇𝐱

σ𝑗=1
𝑀 𝑒 𝜽𝑗

𝑇
𝐱

𝑚 = 1,2, … ,𝑀

▪ This is the multiclass logistic regression model

▪ Note that this construction uses 𝑀 parameter vectors 𝜽1, … , 𝜽𝑀 (one for each class)

▪ Note the number of parameters to learn grows with 𝑀
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