APL 405: Machine Learning for Mechanics

Lecture 5: Linear regression

by

Rajdip Nayek

Assistant Professor, Applied Mechanics Department, IIT Delhi

Instructor email: rajdipn@am.iitd.ac.in

Introduction to basic parametric models

- We introduced the supervised machine learning problem as well as two basic non-parametric methods
 - *k*NN and Decision Trees
 - Non-parametric methods don't have a fixed set of parameters
- Now we will look at some basic parametric modelling techniques, particularly
 - Linear regression
 - Logistic regression
- Parametric model
 - Models that have a certain defined form and have a fixed set of parameters θ which are learned from training data
 - Once the parameters are learned, the training data can be discarded, and predictions depend only on *θ*

- In both regression and classification settings, we seek a function $f(\mathbf{x}^*)$ that maps the test input \mathbf{x}^* to a prediction
- Regression \rightarrow learn relationships between some input variables $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \dots & x_p \end{bmatrix}^T$ and a numerical output y
- The inputs can be either categorical or numerical, but let's consider that all p inputs are numerical
- Mathematically, regression is about learning a *model f* that maps the input to the output

$$y = f(\mathbf{x}) + \epsilon$$

- ϵ is an error term that describes everything about the input-output relationship that cannot be captured by the model
- From a statistical perspective, e is considered as a random variable and referred to as noise, that is independent of x and has zero mean
- Linear regression model: Output y (a scalar) is an affine combination of p input variables x_1, x_2, \dots, x_p plus a noise term

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon$$

• θ_0 , θ_1 , θ_2 , ..., θ_p are called the *parameters* of the model

• Linear regression model: Output y (a scalar) is an affine combination of p + 1 input variables 1, $x_1, x_2, ..., x_p$ plus a noise term

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \begin{bmatrix} 1 & x_1 & \dots & x_p \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_p \end{bmatrix} + \epsilon = \mathbf{x}^T \boldsymbol{\theta} + \epsilon$$

- θ_0 , θ_1 , θ_2 , ..., θ_p are called the *parameters* of the model
- Symbol x is used both for the p + 1 and p-dimensional versions of the input vector, with or without the constant one in the leading position, respectively
- The linear regression model is a **parametric** function of the form $f(\mathbf{x}) = \mathbf{x}^T \boldsymbol{\theta} + \epsilon$
- Learning of the model \rightarrow finding suitable values for θ based on observed training data

How to predict on test set?

- How to make predictions $\hat{y}(\mathbf{x}^*)$ for new previously unseen test inputs $\mathbf{x}^* = \begin{bmatrix} 1 & x_1^* & x_2^* & \dots & x_p^* \end{bmatrix}^T$?
- Let $\widehat{\boldsymbol{\theta}}$ be the learned parameter value for the linear regression model
- Since the noise term
 e is random with zero mean and independent of all observed variables, we replace
 e with 0 in the prediction



5

Training a linear regression model from training data

• Training data: $\mathcal{T} = \left\{ \mathbf{x}^{(i)}, y^{(i)} \right\}_{i=1}^{N}$

$$\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\epsilon} , \qquad \mathbf{X} = \begin{bmatrix} \mathbf{x}^{(1)^T} \\ \mathbf{x}^{(2)^T} \\ \vdots \\ \mathbf{x}^{(N)^T} \end{bmatrix}, \quad \mathbf{x}^{(i)} = \begin{bmatrix} 1 \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_p^{(i)} \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$

Here, e is the vector of noise terms

Predicted outputs for training data,
$$\hat{y} = [\hat{y}(\mathbf{x}^{(1)}) \quad \hat{y}(\mathbf{x}^{(2)}) \quad \cdots \quad \hat{y}(\mathbf{x}^{(N)})]^T$$

 $\hat{y} = \mathbf{X}\boldsymbol{\theta}$

Learning the unknown parameters θ amounts to finding their values such that ŷ is "similar" to y
 "Similar" → finding θ such that ŷ - y = ϵ is small

Formulate a loss function, which gives a mathematical meaning to "similarity" between \hat{y} and y

How to define the problem of learning model parameters?

- Use loss function $L(y, \hat{y}) \rightarrow$ measures the closeness of the model's prediction \hat{y} to the observed data y
 - Smaller the loss, better the model fits the data, and vice versa

Define average loss (or cost function) function, $J(\theta)$, as the average loss over the training data

$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} L\left(y^{(i)}, \hat{y}(\mathbf{x}^{(i)}; \boldsymbol{\theta})\right)$$

Training a model \rightarrow finding the model parameters θ that minimize the average training loss

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} L\left(y^{(i)}, \widehat{y}(\mathbf{x}^{(i)}; \boldsymbol{\theta})\right)$$

- ŷ(x⁽ⁱ⁾; θ) is the model prediction for the x⁽ⁱ⁾ training input and y⁽ⁱ⁾ is the corresponding training output
 The parameter θ has been put as an argument to denote the dependence of the prediction on it
- The operator argmin means 'the value of θ for which the averaged loss function attains it minimum' θ

Least squares problem

For regression, a commonly used loss function is the squared error loss

 $L(y, \hat{y}(\mathbf{x}; \boldsymbol{\theta})) = (y - \hat{y}(\mathbf{x}; \boldsymbol{\theta}))^2$

• This loss function grows quadratically fast as the difference $(y - y(\mathbf{x}; \boldsymbol{\theta}))$ increases

The corresponding average loss function (or cost function)

$$J(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - \hat{y} \left(\mathbf{x}^{(i)}; \boldsymbol{\theta} \right) \right)^2 = \frac{1}{N} \| \mathbf{y} - \hat{\mathbf{y}} \|_2^2 = \frac{1}{N} \| \mathbf{y} - \mathbf{X} \boldsymbol{\theta} \|_2^2 = \frac{1}{N} \| \boldsymbol{\epsilon} \|_2^2$$

- Here, $\|\cdot\|_2^2$ denotes the square of the Euclidean norm. Due to the square, it is called the least squares cost function
- In linear regression, the learning problem effectively finds the best parameter estimate

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - \left(\mathbf{x}^{(i)} \right)^{T} \boldsymbol{\theta} \right)^{2} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{N} \| \boldsymbol{y} - \mathbf{X} \boldsymbol{\theta} \|_{2}^{2}$$

• Closed-form solution exists $\rightarrow \hat{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ if $\mathbf{X}^T \mathbf{X}$ is invertible (will be an exercise in HW)

Linear regression algorithm

- Linear regression with squared error loss is very common in practice, due to its closed-form solution
- Other loss functions lead to optimization problems and often lack closed-form solutions

Training using linear regression model

Training Data:
$$\mathcal{T} = \{ (\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots, (\mathbf{x}^{(N)}, y^{(N)}) \}$$

Result: Learned parameter vector $\widehat{\boldsymbol{\theta}}$

- 1. Construct matrix of input features \mathbf{X} and output vector \mathbf{y}
- 2. Compute $\hat{\theta}$ by solving $(\mathbf{X}^T \mathbf{X})\hat{\theta} = \mathbf{X}^T \mathbf{y}$

Testing using linear regression model

Data: Learned parameter vector $\hat{\theta}$ **Result:** Prediction $\hat{y}(\mathbf{x}^*)$

1. Compute $\hat{y}(\mathbf{x}^*) = (\mathbf{x}^*)^T \, \widehat{\boldsymbol{\theta}}$

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}^{(1)^{T}} \\ \mathbf{x}^{(2)^{T}} \\ \vdots \\ \mathbf{x}^{(N)^{T}} \end{bmatrix}, \quad \mathbf{x}^{(i)} = \begin{bmatrix} 1 \\ x_{1}^{(i)} \\ x_{2}^{(i)} \\ \vdots \\ x_{p}^{(i)} \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$

A maximum likelihood perspective of least squares

- "Likelihood" refers to a statistical concept of a certain function which describes how likely is that a certain value of θ has generated the measurements y
- Instead of selecting a loss function, one could start with the problem

 $\widehat{\boldsymbol{\theta}} = \operatorname*{argmax}_{\boldsymbol{\theta}} p(\boldsymbol{y} | \mathbf{X}; \boldsymbol{\theta})$

- *p*(*y*|X; θ) is the probability density of all observed outputs *y* in the training data, given all inputs X and parameters θ
- $p(\mathbf{y}|\mathbf{X}; \boldsymbol{\theta})$ determines mathematically what 'likely' means

A maximum likelihood perspective of least squares

• **Common assumption**: Noise terms are independent and identically distributed (i.i.d.), each with a Gaussian distribution (also known as a normal distribution) with mean zero and variance σ_{ϵ}^2

 $\epsilon \sim \mathcal{N}(\epsilon; 0, \sigma_\epsilon^2)$

• Implies that all observed training data points are independent, and $p(y|X; \theta)$ factorizes out as

$$p(\mathbf{y}|\mathbf{X};\boldsymbol{\theta}) = \prod_{i=1}^{N} p(y^{(i)}|\mathbf{x}^{(i)};\boldsymbol{\theta})$$

• The linear regression model, $y = \mathbf{x}^T \boldsymbol{\theta} + \epsilon$, together with i.i.d. Gaussian noise assumption leads to

$$p(y^{(i)}|\mathbf{x}^{(i)};\boldsymbol{\theta}) = \mathcal{N}\left(y^{(i)}; \left(\mathbf{x}^{(i)}\right)^T \boldsymbol{\theta}, \sigma_{\epsilon}^2\right) = \frac{1}{\sqrt{2\pi\sigma_{\epsilon}^2}} \exp\left(-\frac{1}{2\sigma_{\epsilon}^2} \left(y^{(i)} - \left(\mathbf{x}^{(i)}\right)^T \boldsymbol{\theta}\right)^2\right)$$

- Recall, we want to maximize the likelihood w.r.t. the parameter $\boldsymbol{\theta}$
- Better to work with logarithm of the likelihood (log-likelihood) to prevent numerical overflow

$$\ln p(\mathbf{y}|\mathbf{X};\boldsymbol{\theta}) = \sum_{i=1}^{N} \ln \left(p(y^{(i)}|\mathbf{x}^{(i)};\boldsymbol{\theta}) \right)$$

A maximum likelihood perspective of least squares

Better to work with logarithm of the likelihood (log-likelihood) to prevent numerical overflow

$$\ln p(\mathbf{y}|\mathbf{X};\boldsymbol{\theta}) = \sum_{i=1}^{N} \ln \left(p(y^{(i)}|\mathbf{x}^{(i)};\boldsymbol{\theta}) \right)$$

Logarithm is a monotonically increasing function, maximising the loglikelihood is equivalent to maximising the likelihood

The linear regression model,
$$y = \mathbf{x}^T \boldsymbol{\theta} + \epsilon$$
, together with i.i.d. Gaussian noise assumption leads to

$$\ln p(\mathbf{y}|\mathbf{X}; \boldsymbol{\theta}) = -\frac{N}{2} \ln(2\pi\sigma_{\epsilon}^2) - \frac{1}{2\sigma_{\epsilon}^2} \sum_{i=1}^{N} \left(y^{(i)} - \left(\mathbf{x}^{(i)} \right)^T \boldsymbol{\theta} \right)^2$$

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ln p(\boldsymbol{y}|\boldsymbol{X}; \boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \left(-\sum_{i=1}^{N} \left(y^{(i)} - \left(\boldsymbol{x}^{(i)} \right)^{T} \boldsymbol{\theta} \right)^{2} \right) = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - \left(\boldsymbol{x}^{(i)} \right)^{T} \boldsymbol{\theta} \right)^{2}$$

- Recall the same estimate is also obtained from linear regression with the least squares cost
- Using squared error loss is equivalent to assuming a Gaussian noise distribution in maximum likelihood formulation
- Other assumptions on
 e lead to other loss functions (will discuss later)

How to handle categorical input variables?

- We had mentioned earlier that input variables x can be numerical, catergorical, or mixed
- Assume that an input variable is categorical and takes only two classes, say A and B

• We can represent such an input variable x using 1 and 0
$$x = \begin{cases} 0, & \text{if } \mathbf{A} \\ 1, & \text{if } \mathbf{B} \end{cases}$$

For linear regression, the model effectively looks like

$$y = \theta_0 + \theta_1 x + \epsilon = \begin{cases} \theta_0 + \epsilon, & \text{if } \mathbf{A} \\ \theta_0 + \theta_1 + \epsilon, & \text{if } \mathbf{B} \end{cases}$$

If the input is a categorical variable with more than two classes, let's say A, B, C, and D, use one-hot encoding

$$\mathbf{x} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \text{ if } \mathbf{A}, \quad \mathbf{x} = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \text{ if } \mathbf{B}, \quad \mathbf{x} = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \text{ if } \mathbf{C}, \quad \mathbf{x} = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \text{ if } \mathbf{D}$$