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Introduction to basic parametric models
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• We introduced the supervised machine learning problem as well as two basic non-parametric methods

• 𝑘NN and Decision Trees

• Non-parametric methods don’t have a fixed set of parameters

• Now we will look at some basic parametric modelling techniques, particularly

• Linear regression

• Logistic regression

• Parametric model

• Models that have a certain defined form and have a fixed set of parameters 𝜽 which are learned from 
training data

• Once the parameters are learned, the training data can be discarded, and predictions depend only on 𝜽



Linear Regression

▪ In both regression and classification settings, we seek a function 𝑓(𝐱∗) that maps the test input 𝐱∗ to a prediction

▪ Regression → learn relationships between some input variables 𝐱 = 𝑥1 𝑥2 … 𝑥𝑝 𝑇 and a numerical output 𝑦

▪ The inputs can be either categorical or numerical, but let’s consider that all 𝑝 inputs are numerical

▪ Mathematically, regression is about learning a model 𝑓 that maps the input to the output

𝑦 = 𝑓 𝐱 + 𝜖

▪ 𝜖 is an error term that describes everything about the input-output relationship that cannot be captured by the model

▪ From a statistical perspective, 𝜖 is considered as a random variable and referred to as noise, that is independent of 𝐱 and 
has zero mean

▪ Linear regression model: Output 𝑦 (a scalar) is an affine combination of 𝑝 input variables 𝑥1, 𝑥2,… , 𝑥𝑝 plus a noise term

𝑦 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 +⋯+ 𝜃𝑝𝑥𝑝 + 𝜖

▪ 𝜃0, 𝜃1, 𝜃2, … , 𝜃𝑝 are called the parameters of the model
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Linear Regression

▪ Linear regression model: Output 𝑦 (a scalar) is an affine combination of 𝑝 + 1 input variables 1, 𝑥1, 𝑥2,… , 𝑥𝑝 plus a noise 
term

𝑦 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 +⋯+ 𝜃𝑝𝑥𝑝 + 𝜖 = 1 𝑥1 … 𝑥𝑝

𝜃0
𝜃1
⋮
𝜃𝑝

+ 𝜖 = 𝐱𝑇𝜽 + 𝜖

▪ 𝜃0, 𝜃1, 𝜃2, … , 𝜃𝑝 are called the parameters of the model

▪ Symbol 𝐱 is used both for the 𝑝 + 1 and  𝑝-dimensional versions of the input vector, with or without the constant one in 
the leading position, respectively

▪ The linear regression model is a parametric function of the form 𝑓 𝐱 = 𝐱𝑇𝜽 + 𝜖

▪ The parameters 𝜽 can take arbitrary values, and the actual values that we assign to them will control the input–output 
relationship described by the model 

▪ Learning of the model → finding suitable values for 𝜽 based on observed training data
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How to predict on test set?

▪ How to make predictions ො𝑦 𝐱∗ for new previously unseen test inputs 𝐱∗ = 1 𝑥1
∗ 𝑥2

∗ … 𝑥𝑝
∗ 𝑇 ?

▪ Let 𝜽 be the learned parameter value for the linear regression model 

▪ Since the noise term 𝜖 is random with zero mean and independent of all observed variables, we replace 𝜖 with 0 in the 
prediction

▪ Prediction  takes form:

5

ො𝑦 𝐱∗ = 𝐱∗ 𝑇𝜽



Training a linear regression model from training data
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▪ Training data: 𝒯 = 𝐱 𝑖 , 𝑦 𝑖
𝑖=1

𝑁

𝒚 = 𝐗𝜽 + 𝝐 ,                        𝐗 =

𝐱 1 𝑇

𝐱 2 𝑇

⋮

𝐱 𝑁 𝑇

, 𝐱 𝑖 =

1

𝑥1
𝑖

𝑥2
𝑖

⋮

𝑥𝑝
𝑖

, 𝒚 =

𝑦 1

𝑦 2

⋮
𝑦 𝑁

▪ Here, 𝝐 is the vector of noise terms

▪ Predicted outputs for training data, ෝ𝒚 = ො𝑦 𝐱 1 ො𝑦 𝐱 2 ⋯ ො𝑦 𝐱 𝑁 𝑇

ෝ𝒚 = 𝐗𝜽

▪ Learning the unknown parameters 𝜽 amounts to finding their values such that ෝ𝒚 is “similar” to 𝒚
▪ “Similar” → finding 𝜽 such that ෝ𝒚 − 𝒚 = 𝝐 is small

▪ Formulate a loss function, which gives a mathematical meaning to “similarity” between ෝ𝒚 and 𝒚



▪ Use loss function 𝐿 𝑦, ො𝑦 → measures the closeness of the model’s prediction ො𝑦 to the observed data 𝑦
▪ Smaller the loss, better the model fits the data, and vice versa

▪ Define average loss (or cost function) function, 𝐽 𝜽 , as the average loss over the training data

𝐽 𝜽 =
1

𝑁


𝑖=1

𝑁

𝐿 𝑦 𝑖 , ො𝑦 𝐱 𝑖 ; 𝜽

▪ Training a model → finding the model parameters 𝜽 that minimize the average training loss

𝜽 = argmin
𝜽

𝐽 𝜽 = argmin
𝜽

1

𝑁


𝑖=1

𝑁

𝐿 𝑦 𝑖 , ො𝑦 𝐱 𝑖 ; 𝜽

▪ ො𝑦 𝐱 𝑖 ; 𝜽 is the model prediction for the 𝐱 𝑖 training input and 𝑦 𝑖 is the corresponding training output
▪ The parameter 𝜽 has been put as an argument to denote the dependence of the prediction on it

▪ The operator argmin
𝜽

means ‘the value of 𝜽 for which the averaged loss function attains it minimum’

How to define the problem of learning model parameters? 
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Least squares problem
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▪ For regression, a commonly used loss function is the squared error loss 

𝐿 𝑦, ො𝑦 𝐱; 𝜽 = 𝑦 − ො𝑦 𝐱; 𝜽
2

▪ This loss function grows quadratically fast as the difference (𝑦 − 𝑦 ̂(𝐱; 𝜽)) increases

▪ The corresponding average loss function (or cost function)

𝐽 𝜽 = 𝐽 𝜽 =
1

𝑁


𝑖=1

𝑁

𝑦 𝑖 − ො𝑦 𝐱 𝑖 ; 𝜽
2
=
1

𝑁
𝒚 − ෝ𝒚 2

2 =
1

𝑁
𝒚 − 𝐗𝜽 2

2 =
1

𝑁
𝝐 2

2

▪ Here, ⋅ 2
2 denotes the square of the Euclidean norm. Due to the square, it is called the least squares cost function

▪ In linear regression, the learning problem effectively finds the best parameter estimate

𝜽 = argmin
𝜽

1

𝑁


𝑖=1

𝑁

𝑦 𝑖 − 𝐱(𝑖)
𝑇
𝜽

2
=argmin

𝜽

1

𝑁
𝒚 − 𝐗𝜽 2

2

▪ Closed-form solution exists → 𝜽 = 𝐗𝑇𝐗 −1𝐗𝑇𝒚 if  𝐗𝑇𝐗 is invertible (will be an exercise in HW)



Linear regression algorithm
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▪ Linear regression with squared error loss is very common in practice, due to its closed-form solution

▪ Other loss functions lead to optimization problems and often lack closed-form solutions

Training using linear regression model

Training Data:       𝒯 = 𝐱 1 , 𝑦 1 , 𝐱 2 , 𝑦 2 , … , 𝐱 𝑁 , 𝑦 𝑁

Result:      Learned parameter vector 𝜽

1. Construct matrix of input features 𝐗 and output vector 𝒚

2. Compute 𝜽 by solving 𝐗𝑇𝐗 𝜽 = 𝐗𝑇𝒚

𝐗 =

𝐱 1 𝑇

𝐱 2 𝑇

⋮

𝐱 𝑁 𝑇

, 𝐱 𝑖 =

1

𝑥1
𝑖

𝑥2
𝑖

⋮

𝑥𝑝
𝑖

, 𝒚 =

𝑦 1

𝑦 2

⋮
𝑦 𝑁

Testing using linear regression model

Data:     Learned parameter vector 𝜽
Result:  Prediction ො𝑦 𝐱∗

1. Compute ො𝑦 𝐱∗ = 𝐱∗ 𝑇 𝜽



A maximum likelihood perspective of least squares
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▪ “Likelihood” refers to a statistical concept of a certain function which describes how likely is that a certain value of 𝜽 has
generated the measurements 𝒚

▪ Instead of selecting a loss function, one could start with the problem

𝜽 = argmax
𝜽

𝑝 𝒚 𝐗; 𝜽

▪ 𝑝 𝒚 𝐗; 𝜽 is the probability density of all observed outputs 𝒚 in the training data, given all inputs 𝐗 and parameters 𝜽

▪ 𝑝 𝒚 𝐗; 𝜽 determines mathematically what ‘likely’ means



A maximum likelihood perspective of least squares
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▪ Common assumption: Noise terms are independent and identically distributed (i.i.d.), each with a Gaussian distribution 
(also known as a normal distribution) with mean zero and variance 𝜎𝜖

2

𝜖 ~𝒩 𝜖; 0, 𝜎𝜖
2

▪ Implies that all observed training data points are independent, and 𝑝 𝒚 𝐗; 𝜽 factorizes out as 

𝑝 𝒚 𝐗; 𝜽 =ෑ

𝑖=1

𝑁

𝑝 𝑦 𝑖 𝐱 𝑖 ; 𝜽

▪ The linear regression model, 𝑦 = 𝐱𝑇𝜽 + 𝜖, together with i.i.d. Gaussian noise assumption leads to

𝑝 𝑦 𝑖 𝐱 𝑖 ; 𝜽 = 𝒩 𝑦 𝑖 ; 𝐱(𝑖)
𝑇
𝜽, 𝜎𝜖

2 =
1

2𝜋𝜎𝜖
2
exp −

1

2𝜎𝜖
2 𝑦 𝑖 − 𝐱 𝑖 𝑇

𝜽
2

▪ Recall, we want to maximize the likelihood w.r.t. the parameter 𝜽

▪ Better to work with logarithm of the likelihood (log-likelihood) to prevent numerical overflow

ln 𝑝 𝒚 𝐗; 𝜽 =
𝑖=1

𝑁

ln 𝑝 𝑦 𝑖 𝐱 𝑖 ; 𝜽



A maximum likelihood perspective of least squares
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▪ Better to work with logarithm of the likelihood (log-likelihood) to prevent numerical overflow

ln 𝑝 𝒚 𝐗; 𝜽 =
𝑖=1

𝑁

ln 𝑝 𝑦 𝑖 𝐱 𝑖 ; 𝜽

▪ Logarithm is a monotonically increasing function, maximising the loglikelihood is equivalent to maximising the likelihood

▪ The linear regression model, 𝑦 = 𝐱𝑇𝜽 + 𝜖, together with i.i.d. Gaussian noise assumption leads to

ln 𝑝 𝒚 𝐗; 𝜽 = −
𝑁

2
ln 2𝜋𝜎𝜖

2 −
1

2𝜎𝜖
2

𝑖=1

𝑁

𝑦 𝑖 − 𝐱 𝑖 𝑇
𝜽

2

𝜽 = argmax
𝜽

ln 𝑝 𝒚 𝐗; 𝜽 = argmax
𝜽

−
𝑖=1

𝑁

𝑦 𝑖 − 𝐱 𝑖 𝑇
𝜽

2

= argmin
𝜽

1

𝑁


𝑖=1

𝑁

𝑦 𝑖 − 𝐱 𝑖 𝑇
𝜽

2

▪ Recall the same estimate is also obtained from linear regression with the least squares cost

▪ Using squared error loss is equivalent to assuming a Gaussian noise distribution in maximum likelihood formulation

▪ Other assumptions on 𝜖 lead to other loss functions (will discuss later)



How to handle categorical input variables?
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▪ We had mentioned earlier that input variables 𝐱 can be numerical, catergorical, or mixed

▪ Assume that an input variable is categorical and takes only two classes, say A and B

▪ We can represent such an input variable 𝑥 using 1 and 0 

▪ For linear regression, the model effectively looks like

𝑦 = 𝜃0 + 𝜃1𝑥 + 𝜖 = ቊ
𝜃0 + 𝜖, if 𝐀
𝜃0 + 𝜃1 + 𝜖, if 𝐁

▪ If the input is a categorical variable with more than two classes, let’s say A, B, C, and D, use one-hot encoding

𝑥 = ቊ
0, if 𝐀
1, if 𝐁

𝐱 =

1
0
0
0

if A, 𝐱 =

0
1
0
0

if B,    𝐱 =

0
0
1
0

if C, 𝐱 =

0
0
0
1

if D
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