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Introduction to basic parametric models

 We introduced the supervised machine learning problem as well as two basic non-parametric methods

e kNN and Decision Trees

* Non-parametric methods don’t have a fixed set of parameters

* Now we will look at some basic parametric modelling techniques, particularly
* Linear regression

* Logistic regression

* Parametric model

 Models that have a certain defined form and have a fixed set of parameters @ which are learned from
training data

* Once the parameters are learned, the training data can be discarded, and predictions depend only on 8



Linear Regression

" |In both regression and classification settings, we seek a function f(x*) that maps the test input x* to a prediction

" Regression — learn relationships between some input variablesx = [X1 X2 -+ Xp]T and a numerical output y

" The inputs can be either categorical or numerical, but let’s consider that all p inputs are numerical

" Mathematically, regression is about learning a model f that maps the input to the output
y=f&x +e
" ¢is an error term that describes everything about the input-output relationship that cannot be captured by the model

" From a statistical perspective, € is considered as a random variable and referred to as noise, that is independent of X and
has zero mean

" Linear regression model: Output y (a scalar) is an affine combination of p input variables x;, x5, ..., x,, plus a noise term

Yy = 60 +61x1 +02X2 ~+ "‘+0pxp + €

" 0y 64, 05, ..., 9p are called the parameters of the model



Linear Regression

" Linear regression model: Output y (a scalar) is an affine combination of p + 1 input variables 1, x;, x5,..., x,, plus a noise
term

" 0y, 041, 05, ..., 9p are called the parameters of the model

® Symbol x is used both for the p + 1 and p-dimensional versions of the input vector, with or without the constant one in
the leading position, respectively

" The linear regression model is a parametric function of the form f(x) = x70 + ¢

" The parameters 0 can take arbitrary values, and the actual values that we assign to them will control the input—output
relationship described by the model

" Learning of the model — finding suitable values for 8 based on observed training data



How to predict on test set?

" How to make predictions §(x*) for new previously unseen testinputs x* = [1  x; x; .. xp]T?

" |et O be the learned parameter value for the linear regression model

" Since the noise term € is random with zero mean and independent of all observed variables, we replace € with 0 in the

prediction

® Prediction takes form:
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Training a linear regression model from training data

" Training data: T = {x("),y(")}liv=1

— 1 -
X(l): o ()]
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y=X0+¢€, X = X(?) , xO =P, y=|7.
T 3 )

x (V)" | -xz(al)_ Ly~
" Here, € is the vector of noise terms
= Predicted outputs for training data, = [§(xV) $(x@) - y(x(N))]T

9 = X0

Learning the unknown parameters 8 amounts to finding their values such that ¥ is “similar” to y
= “Similar” — finding @ such thaty —y = ¢€is small

Formulate a loss function, which gives a mathematical meaning to “similarity” betweeny and y



How to define the problem of learning model parameters?

Use loss function L(y, ¥) — measures the closeness of the model’s prediction y to the observed data y
® Smaller the loss, better the model fits the data, and vice versa

Define average loss (or cost function) function, /(0), as the average loss over the training data

N
1) ==Y L(y,5(x;6))

i=1

Training a model — finding the model parameters 8 that minimize the average training loss

N

~ 1 : :

@ = argmin /(@) = argmin—z L (y(‘),j?(x(‘); 9))
0 o N i=1

y(x(i); 0) is the model prediction for the x(® training input and y(i) is the corresponding training output
" The parameter @ has been put as an argument to denote the dependence of the prediction on it

The operator argmin means ‘the value of 0 for which the averaged loss function attains it minimum’
0



Least squares problem

" For regression, a commonly used loss function is the squared error loss
~ ~ 2
Ly, 9x8)=(y —9(x;0))

This loss function grows quadratically fast as the difference (y — y'(X; 0)) increases

" The corresponding average loss function (or cost function)
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Here, ||-||% denotes the square of the Euclidean norm. Due to the square, it is called the least squares cost function

" |n linear regression, the learning problem effectively finds the best parameter estimate

N
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_ o @ _ (@ _ in— ||y — X0|2
6 = argmin Nzl(y (x©)'6) =argminy; lly — X6l
1=

" Closed-form solution exists = 8 = (XTX)"'XTy if XTXis invertible (will be an exercise in HW)



Linear regression algorithm

" Other loss functions lead to optimization problems and often lack closed-form solutions

Training using linear regression model

TrainingData: 7 = {(xV),y), (x@,y@), ., (xN),y(N)}
Result: Learned parameter vector 8

1. Construct matrix of input features X and output vector y

2. Compute 8 by solving (XTX)8 = XTy

Testing using linear regression model

Data: Learned parameter vector 8
Result: Prediction y(x*)

1. Compute y(x*) = (x*)T 0
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Linear regression with squared error loss is very common in practice, due to its closed-form solution

'y(l) ]

y(Z)

y ™).




A maximum likelihood perspective of least squares

“Likelihood” refers to a statistical concept of a certain function which describes how likely is that a certain value of 8 has
generated the measurements y

" |nstead of selecting a loss function, one could start with the problem

0 = argmax p(y|X; 0)
0

p(y|X; @) is the probability density of all observed outputs y in the training data, given all inputs X and parameters 0

p(y|X; 8) determines mathematically what ‘likely’ means
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A maximum likelihood perspective of least squares

" Common assumption: Noise terms are independent and identically distributed (i.i.d.), each with a Gaussian distribution

(also known as a normal distribution) with mean zero and variance ¢ 2

e ~N(g0,02)

Implies that all observed training data points are independent, and p(y|X; ) factorizes out as

N
p(y|X; 0) = ﬂp(y(")lx(”; 9)
i=1

The linear regression model, y = X7 0 + ¢, together with i.i.d. Gaussian noise assumption leads to

D@ p) — @. (@ g +2) = o e
POl 058) = 3 (505 () 0.07) = e (=525 (40 - 1)) )

Recall, we want to maximize the likelihood w.r.t. the parameter 0

" Better to work with logarithm of the likelihood (log-likelihood) to prevent numerical overflow

N . .
Inp(ylX; 6) = Z,_l In(p(y@|x®; 6))

l
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A maximum likelihood perspective of least squares

" Better to work with logarithm of the likelihood (log-likelihood) to prevent numerical overflow

N
Inp(yIX; 6) = z In (p(y©@[x®; 6))
i=1
" Logarithm is a monotonically increasing function, maximising the loglikelihood is equivalent to maximising the likelihood

" The linear regression model, y = X7 0 + ¢, together with i.i.d. Gaussian noise assumption leads to

N 1 N ) ~T \2
] X:0) = ——In(2no?) — z @O (x) g
np(yIX;6) = -5 In(2no?) - 7 izl(y (x®)'9)
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0 = argmax Inp(y|X; ) = argmax (—Z
0 6 i

L=

" Recall the same estimate is also obtained from linear regression with the least squares cost
" Using squared error loss is equivalent to assuming a Gaussian noise distribution in maximum likelihood formulation

® Other assumptions on € lead to other loss functions (will discuss later)
12



How to handle categorical input variables?

" We had mentioned earlier that input variables X can be numerical, catergorical, or mixed

Assume that an input variable is categorical and takes only two classes, say A and B

: : : 0, if A

We can represent such an input variable x using 1 and 0 X =11 B
For linear regression, the model effectively looks like

90 + €, if A

If the input is a categorical variable with more than two classes, let’s say A, B, C, and D, use one-hot encoding

:oocu—{

y=90+91x+6={

if A,

X =

:oor—\o:

ifB, x=

90 + 91 +€,1fB

:or—\oo:

ifC, x=

===

if D
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