
APL 405: Machine Learning for Mechanics

Lecture 4: Decision Trees

by

Rajdip Nayek

Assistant Professor,
Applied Mechanics Department,

IIT Delhi

Instructor email: rajdipn@am.iitd.ac.in

Supervised Learning: Recap of 𝑘NN

2

▪ In both regression and classification settings, we seek a function 𝑓(𝐱∗) that maps the test input 𝐱∗ to a prediction

▪ The 𝑘-NN method results in a prediction ො𝑦 𝐱∗ that is a piecewise constant function of the input 𝐱∗

▪ The method partitions the input space into disjoint regions

▪ Each region is associated with a certain constant prediction

▪ These regions are describted by the 𝑘-neighbourhood of each possible test input

▪ Another way is to come up with a set of rules that defines the regions explicitly: Decision Trees

▪ Also known as Classification and Regression Trees (CART)

Idea of decision trees (CART)

3

▪ Scenario: Decide Male or Female?

▪ Features measured: height and weight

Idea of decision trees (CART)

4

Yes No

Yes NoYes No

Weight < 70 kg

Height < 160 cmHeight < 175 cm

Split continuous features by checking whether that feature is greater than or less than some threshold

Idea of decision trees (CART)

5

Yes No

Yes No

Weight < 70 kg

Height < 170 cm

Split continuous features by checking whether that feature is greater than or less than some threshold

Idea of decision trees (CART)

6
Make predictions by splitting on features according to a tree structure

Yes No

Yes No

Weight < 70 kg

Height < 170 cm

Test input
• Weight = 70 kg
• Height= 168 cm

Structure of a Decision Tree

8

Structure of a Decision Tree

▪ Consider the classification example with two numerical inputs 𝐱 = 𝑥1 𝑥2 𝑇 and a categorical output 𝑦 ∈ F,M

▪ 𝑥1 - height in centimeters

▪ 𝑥2 - weight in kg

9

𝑥2 < 70

𝑥1 < 170

𝑅1
ො𝑦 = F

𝑅2
ො𝑦 = F

𝑅3
ො𝑦 = M

Set of Rules

Structure of a decision tree

• Internal nodes check an input variable

• Left/Right branch is determined by
value of input variable → 𝑥𝑗 < 𝑠𝑘

• Leaf nodes are outputs (predictions)

The tree shown has two internal nodes
(including the root) and three leaf nodes

The tree is referred to as binary tree
since each internal node splits into
exactly two branches

Decision boundaries of a Decision Tree

▪ Consider a classification example with two numerical inputs 𝐱 = 𝑥1 𝑥2 𝑇 and a categorical output 𝑦 ∈ F,M

▪ Each path from root node to a leaf defines a region 𝑅𝑚 of input space

▪ The decision tree partitions the input space into axis-aligned ‘boxes’ or rectangles. So the decision boundaries are in the
shape of rectangles

10

𝑅2 𝑅3
𝑥2

𝑅1

𝑥1

70 kg

170 cm 𝑥2 < 70

𝑥1 < 170

𝑅1
ො𝑦1 = F

𝑅2
ො𝑦2 = F

𝑅3
ො𝑦3 = M

Make a prediction using a Classification tree

▪ Consider a test input 𝐱∗ = 70 168 𝑇

▪ 𝑥1 - height in centimeters

▪ 𝑥2 - weight in kg

11

𝑥2 < 70

𝑥1 < 170

𝑅1
ො𝑦1 = F

𝑅2
ො𝑦2 = F

𝑅3
ො𝑦3 = M

Set of Rules

Structure of Decision Trees

▪ The same partitioning can be done for a general input vector 𝐱 = 𝑥1 𝑥2 ⋯ 𝑥𝑝 𝑇, however, the partitioned space is
difficult to illustrate

▪ For a 𝑝-dimensional input space, the decision boundaries would be represented by hyper-rectangles (boxes in higher
dimensions)

▪ Let 𝐱 𝑚1 , 𝑦 𝑚1 , 𝐱 𝑚2 , 𝑦 𝑚2 , ⋯ , 𝐱 𝑚𝑘 , 𝑦 𝑚𝑘 be the

training examples that fall into 𝑅𝑚
▪ 𝑚 = 3, 𝑘 = 9 for the top-right reddish box

▪ Regression tree

▪ Numerical output

▪ Leaf value ො𝑦𝑚 typically set to the mean value in 𝐱 𝑚1 , 𝑦 𝑚1 , ⋯ , 𝐱 𝑚𝑘 , 𝑦 𝑚𝑘

▪ Classification tree

▪ Catergorical output

▪ Leaf value ො𝑦𝑚 typically set to the most common value (mode) in 𝐱 𝑚1 , 𝑦 𝑚1 , ⋯ , 𝐱 𝑚𝑘 , 𝑦 𝑚𝑘

12

𝑅2 𝑅3
𝑥2

𝑅1

𝑥1

70 kg

170 cm

Learning Decision Trees

▪ We saw how a decision tree can be used to make a prediction. Now, how a tree can be learned from training data?

▪ Learning a decision tree involves deciding the shape of the tree

▪ Finding the number of regions (boxes), say 𝐿 regions, 𝑅1, 𝑅2, ⋯ , 𝑅𝐿, and

▪ Finding the partitions of the boxes

▪ We should select the number of regions and partitions such that the tree fits the training data well

▪ the output predictions from the tree should match the output values in the training data

▪ However, finding the tree (a collection of splitting rules) that optimally partitions the input space to fit the training data is
computationally infeasible due to combinatorial explosion in the number of ways you can partition the input space

▪ Searching through all possible binary trees is not possible in practice unless the tree size is very small

▪ To handle this situation, a heuristic algorithm known as recursive binary splitting is used for learning decision trees.

13

𝑅2 𝑅3𝑥2

𝑅1
𝑥1

Learning Classification Trees using Recursive Binary Splitting

Start with the first split at the root and then build the tree from top to bottom

▪ When determining the splitting rule at the root node, the objective is to obtain a model that best explains the training
data after a single split, without taking into consideration that additional splits may be added afterwards

14

𝑖 𝑥1 𝑥2 𝑦

1 9 2 Blue

2 4 1 Blue

3 1 2 Blue

4 1 4 Blue

5 1 8 Red

6 6 4 Red

7 7 9 Red

8 9 8 Red

Learning Classification Trees using Recursive Binary Splitting

Start with the first split at the root and then build the tree from top to bottom

▪ When determining the splitting rule at the root node, the objective is to obtain a model that best explains the training
data after a single split, without taking into consideration that additional splits may be afterwards

▪ Select one of the 𝑝 input variables 𝑥1, ⋯ 𝑥𝑗 , ⋯ , 𝑥𝑝 and a corresponding cutpoint 𝑠 which divide the input space into

two half-spaces

𝑅1 𝑗, 𝑠 = 𝐱 𝑥𝑗 < 𝑠 and 𝑅2 𝑗, 𝑠 = 𝐱 𝑥𝑗 ≥ 𝑠

15

𝑖 𝑥1 𝑥2 𝑦

1 9 2 Blue

2 4 1 Blue

3 1 2 Blue

4 1 4 Blue

5 1 8 Red

6 6 4 Red

7 7 9 Red

8 9 8 Red

Split at say 𝑥1 = 2.5

𝑅2 1, 2.5𝑅1 1, 2.5

Learning Classification Trees using Recursive Binary Splitting

Start with the first split at the root and then build the tree from top to bottom

▪ When determining the splitting rule at the root node, the objective is to obtain a model that best explains the training
data after a single split, without taking into consideration that additional splits may be added afterwards

▪ Select one of the 𝑝 input variables 𝑥1, ⋯ 𝑥𝑗 , ⋯ , 𝑥𝑝 and a corresponding cutpoint 𝑠 which divide the input space into

two half-spaces

𝑅1 𝑗, 𝑠 = 𝐱 𝑥𝑗 < 𝑠 and 𝑅2 𝑗, 𝑠 = 𝐱 𝑥𝑗 ≥ 𝑠

▪ The predictions associated with the two regions will be

ො𝑦1 𝑗, 𝑠 = Mode 𝑦 𝑖 : 𝐱 𝑖 ∈ 𝑅1 𝑗, 𝑠 and ො𝑦2 𝑗, 𝑠 = Mode 𝑦 𝑖 : 𝐱 𝑖 ∈ 𝑅2 𝑗, 𝑠

16

Blue Red

𝑅1 1, 2.5 𝑅2 1, 2.5

Learning Classification Trees using Recursive Binary Splitting

Start with the first split at the root and then build the tree from top to bottom

▪ When determining the splitting rule at the root node, the objective is to obtain a model that best explains the training
data after a single split, without taking into consideration that additional splits may added afterwards

▪ Select one of the 𝑝 input variables 𝑥1, ⋯ , 𝑥𝑝 and a corresponding cutpoint 𝑠 which divide the input space into two

half-spaces

𝑅1 𝑗, 𝑠 = 𝐱 𝑥𝑗 < 𝑠 and 𝑅2 𝑗, 𝑠 = 𝐱 𝑥𝑗 ≥ 𝑠

▪ The predictions associated with the two regions will be

ො𝑦1 𝑗, 𝑠 = Mode 𝑦 𝑖 : 𝐱 𝑖 ∈ 𝑅1 𝑗, 𝑠 and ො𝑦2 𝑗, 𝑠 = Mode 𝑦 𝑖 : 𝐱 𝑖 ∈ 𝑅2 𝑗, 𝑠

▪ Compute prediction loss for all training data points 𝐱 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
at the node to determine goodness-of-fit

Loss = 𝑛1𝑄ℓ, 𝐿 𝑗, 𝑠 + 𝑛2𝑄ℓ, 𝑅 𝑗, 𝑠

where, 𝑛1, 𝑛2 are the number of data points in left and right nodes of current split and 𝑄ℓ,𝐿, 𝑄ℓ,𝑅 are the associated
prediction errors of the left (𝐿) branch and right (𝑅) branch for the ℓth region

17

𝑅1 1, 2.5 𝑅2 1, 2.5

Loss → When learning a model, we use a scalar number to assess whether we are on track; low is good, high is bad

Prediction errors for classification trees

▪ Define ො𝜋ℓ,𝑚 as the proportion of training observations in the ℓth region belong to the 𝑚th class

ො𝜋ℓ,𝑚 =
1

𝑛ℓ
෍

𝑖:𝐱 𝑖 ∈𝑅ℓ(𝑗,𝑠)

𝐈 𝑦 𝑖 = 𝑚

▪ Misclassification rate: proportion of data points in region 𝑅ℓ which do not belong to the most common class

𝑄ℓ = 1 −max
𝑚

ො𝜋ℓ,𝑚

▪ Gini index

𝑄ℓ = σ𝑚=1
𝑀 ො𝜋ℓ,𝑚 1 − ො𝜋ℓ,𝑚

▪ Entropy criteria (commonly used)

𝑄ℓ = −σ𝑚=1
𝑀 ො𝜋ℓ,𝑚 ln ො𝜋ℓ,𝑚

18

𝑅1 1, 2.5 𝑅2 1, 2.5

Calculating the loss for 1st split

▪ Define ො𝜋ℓ,𝑚 as the proportion of training observations in the ℓth region of that belong to the 𝑚th class

ො𝜋ℓ,𝑚 =
1

𝑛ℓ
෍

𝑖:𝐱 𝑖 ∈𝑅1(𝑗,𝑠)

𝐈 𝑦 𝑖 = 𝑚

▪ Let’s use Misclassification rate: 𝑄ℓ = 1 −max
𝑚

ො𝜋ℓ,𝑚

19

𝑅1 1, 2.5 𝑅2 1, 2.5

Splits 𝑅1 𝑛1 ො𝜋1,𝐵 ො𝜋1,𝑅 𝑄1 𝑛2 ො𝜋2,𝐵 ො𝜋2,𝑅 𝑄2 𝑛1𝑄1 + 𝑛2𝑄2

𝑥1 < 2.5 3 2/3 1/3 1/3 5 2/5 3/5 2/5 3

Splits 𝑅1 𝑛1 ො𝜋1,𝐵 ො𝜋1,𝑅 𝑄1 𝑛2 ො𝜋2,𝐵 ො𝜋2,𝑅 𝑄2 𝑛1𝑄1 + 𝑛2𝑄2

𝑥1 < 2.5 3 2/3 1/3 1/3 5 2/5 3/5 2/5 3

𝑥1 < 5.0 4 3/4 1/4 1/4 4 1/4 3/4 1/4 2

Calculating the loss for 1st split

▪ Define ො𝜋ℓ,𝑚 as the proportion of training observations in the ℓth region of that belong to the 𝑚th class

ො𝜋ℓ,𝑚 =
1

𝑛ℓ
෍

𝑖:𝐱 𝑖 ∈𝑅1(𝑗,𝑠)

𝐈 𝑦 𝑖 = 𝑚

▪ Let’s use Misclassification rate: 𝑄ℓ = 1 −max
𝑚

ො𝜋ℓ,𝑚

20

𝑅1 1, 2.5 𝑅2 1, 2.5

Splits 𝑅1 𝑛1 ො𝜋1,𝐵 ො𝜋1,𝑅 𝑄1 𝑛2 ො𝜋2,𝐵 ො𝜋2,𝑅 𝑄2 𝑛1𝑄1 + 𝑛2𝑄2

𝑥1 < 2.5 3 2/3 1/3 1/3 5 2/5 3/5 2/5 3

𝑥1 < 5.0 4 3/4 1/4 1/4 4 1/4 3/4 1/4 2

𝑥1 < 8.0 6 3/6 3/6 3/6 2 1/2 1/2 1/2 4

Calculating the loss for 1st split

▪ Define ො𝜋ℓ,𝑚 as the proportion of training observations in the ℓth region of that belong to the 𝑚th class

ො𝜋ℓ,𝑚 =
1

𝑛ℓ
෍

𝑖:𝐱 𝑖 ∈𝑅1(𝑗,𝑠)

𝐈 𝑦 𝑖 = 𝑚

▪ Let’s use Misclassification rate: 𝑄ℓ = 1 −max
𝑚

ො𝜋ℓ,𝑚

21

𝑅1 1, 8.0 𝑅2 1, 8.0

Calculating the loss for 1st split

▪ Define ො𝜋ℓ,𝑚 as the proportion of training observations in the ℓth region of that belong to the 𝑚th class

ො𝜋ℓ,𝑚 =
1

𝑛ℓ
෍

𝑖:𝐱 𝑖 ∈𝑅1(𝑗,𝑠)

𝐈 𝑦 𝑖 = 𝑚

▪ Let’s use Misclassification rate: 𝑄ℓ = 1 −max
𝑚

ො𝜋ℓ,𝑚

▪ To find the optimal split, we select the values for 𝑗 and 𝑠 that minimise the loss

22

𝑅1 2, 3.0

𝑅2 2, 3.0

Splits 𝑅1 𝑛1 ො𝜋1,𝐵 ො𝜋1,𝑅 𝑄1 𝑛2 ො𝜋2,𝐵 ො𝜋2,𝑅 𝑄2 𝑛1𝑄1 + 𝑛2𝑄2

𝑥1 < 2.5 3 2/3 1/3 1/3 5 2/5 3/5 2/5 3

𝑥1 < 5.0 4 3/4 1/4 1/4 4 1/4 3/4 1/4 2

𝑥1 < 8.0 6 3/6 3/6 3/6 2 1/2 1/2 1/2 4

𝑥2 < 3.0 3 3/3 0/3 0/3 5 1/5 4/5 1/5 1

Calculating the loss for 1st split

▪ Define ො𝜋ℓ,𝑚 as the proportion of training observations in the ℓth region of that belong to the 𝑚th class

ො𝜋ℓ,𝑚 =
1

𝑛ℓ
෍

𝑖:𝐱 𝑖 ∈𝑅1(𝑗,𝑠)

𝐈 𝑦 𝑖 = 𝑚

▪ Let’s use Misclassification rate: 𝑄ℓ = 1 −max
𝑚

ො𝜋ℓ,𝑚

23

Splits 𝑅1 𝑛1 ො𝜋1,𝐵 ො𝜋1,𝑅 𝑄1 𝑛2 ො𝜋2,𝐵 ො𝜋2,𝑅 𝑄2 𝑛1𝑄1 + 𝑛2𝑄2

𝑥1 < 2.5 3 2/3 1/3 1/3 5 2/5 3/5 2/5 3

𝑥1 < 5.0 4 3/4 1/4 1/4 4 1/4 3/4 1/4 2

𝑥1 < 8.0 6 3/6 3/6 3/6 2 1/2 1/2 1/2 4

𝑥2 < 3.0 3 3/3 0/3 0/3 5 1/5 4/5 1/5 1

𝑥2 < 5.0 5 4/5 1/5 1/5 3 0/3 3/3 0/3 1

𝑅1 2, 3.0

𝑅2 2, 3.0

Learning Classification Trees using Recursive Binary Splitting

Start with the first split at the root and then build the tree from top to bottom

▪ When determining the splitting rule at the root node, the objective is to obtain a model that best explains the training
data after a single split, without taking into consideration that additional splits may be added before arriving at the final
model

▪ Select one of the 𝑝 input variables 𝑥1, ⋯ , 𝑥𝑝 and a corresponding cutpoint 𝑠 which divide the input space into two

half-spaces

𝑅1 𝑗, 𝑠 = 𝐱 𝑥𝑗 < 𝑠 and 𝑅2 𝑗, 𝑠 = 𝐱 𝑥𝑗 ≥ 𝑠

▪ The predictions associated with the two regions will be

ො𝑦1 𝑗, 𝑠 = Mode 𝑦 𝑖 : 𝐱 𝑖 ∈ 𝑅1 𝑗, 𝑠 and ො𝑦2 𝑗, 𝑠 = Mode 𝑦 𝑖 : 𝐱 𝑖 ∈ 𝑅2 𝑗, 𝑠

▪ Compute loss (squared error) for all training data points 𝐱 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
at the node to determine goodness-of-fit

𝑛1𝑄1 + 𝑛2𝑄2

where, 𝑛1, 𝑛2 are # of data points in left and right nodes of current split and 𝑄1, 𝑄2 are associated prediction errors

▪ To find the optimal split, we select the values for 𝑗 and 𝑠 that minimise the loss

▪ When we have decided on the first split of the input space (corresponding to the root node of the tree), this split is kept
fixed, and we continue in a similar way for the two resulting half-spaces (corresponding to the two branches of the tree)

24

Calculating the loss for 2nd split

▪ There is no point splitting region 𝑅1 further since it only contains data points from the same class (Blue)

▪ We therefore split the upper region into two new regions, 𝑅2 and 𝑅3

▪ We split in the same manner as before

25

Splits 𝑅2 𝑛2 ො𝜋2,𝐵 ො𝜋2,𝑅 𝑄2 𝑛3 ො𝜋3,𝐵 ො𝜋3,𝑅 𝑄3 𝑛2𝑄2 + 𝑛3𝑄3

𝑥1 < 2.5 2 1/2 1/2 1/2 3 0/3 3/3 0/3 1

𝑥1 < 8.0 4 1/4 3/4 1/4 1 0/1 1/1 0/1 1

𝑥2 < 5.0 2 1/2 1/2 1/2 3 0/3 3/3 0/3 1

𝑥2 < 8.5 4 1/4 3/4 1/4 1 0/1 1/1 0/1 1

𝑅1 2, 3.0

𝑅2 1, 2.5 𝑅3 1, 2.5

Learning Regression Trees using Recursive Binary Splitting

Start with the first split at the root and then build the tree from top to bottom

▪ When determining the splitting rule at the root node, the objective is to obtain a model that best explains the training
data after a single split, without taking into consideration that additional splits may be added before arriving at the final
model

▪ Select one of the 𝑝 input variables 𝑥1, ⋯ , 𝑥𝑝 and a corresponding cutpoint 𝑠 which divide the input space into two

half-spaces

𝑅1 𝑗, 𝑠 = 𝐱 𝑥𝑗 < 𝑠 and 𝑅2 𝑗, 𝑠 = 𝐱 𝑥𝑗 ≥ 𝑠

▪ The predictions associated with the two regions will be

ො𝑦1 𝑗, 𝑠 = Mean 𝑦 𝑖 : 𝐱 𝑖 ∈ 𝑅1 𝑗, 𝑠 and ො𝑦2 𝑗, 𝑠 = Mean 𝑦 𝑖 : 𝐱 𝑖 ∈ 𝑅2 𝑗, 𝑠

▪ Compute loss (squared error) for all training data points 𝐱 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
at the node to determine goodness-of-fit

𝑛1𝑄1 + 𝑛2𝑄2 = ෍

𝑖:𝐱 𝑖 ∈𝑅1(𝑗,𝑠)

𝑦 𝑖 − ො𝑦1 𝑗, 𝑠
2
+ ෍

𝑖:𝐱 𝑖 ∈𝑅2(𝑗,𝑠)

𝑦 𝑖 − ො𝑦2 𝑗, 𝑠
2

where, 𝑛1, 𝑛2 are # of data points in left and right nodes of current split and 𝑄1, 𝑄2 are associated prediction errors

▪ To find the optimal split, we select the values for 𝑗 and 𝑠 that minimise the loss

▪ When we have decided on the first split of the input space (corresponding to the root node of the tree), this split is kept
fixed, and we continue in a similar way for the two resulting half-spaces (corresponding to the two branches of the tree)

26

Algorithm for CART using Recursive Binary Splitting

27

Data: 𝐱 1 , 𝑦 1 , 𝐱 2 , 𝑦 2 , … , 𝐱 𝑁 , 𝑦 𝑁

Output: Decision tree with regions 𝑅1, 𝑅2, … , 𝑅𝐿 and corresponding predictions ො𝑦1, ො𝑦2, … , ො𝑦𝐿

1. Let 𝑅 denote the entire input space

2. Compute the regions 𝑅1, ⋯ , 𝑅𝐿 = 𝐬𝐩𝐥𝐢𝐭 𝑅, 𝒯

3. Compute the predictions ො𝑦ℓ for ℓ = 1,2, … , 𝐿 as

ො𝑦ℓ = ቐ
Mean 𝑦 𝑖 : 𝐱 𝑖 ∈ 𝑅ℓ 𝐑𝐞𝐠𝐫𝐞𝐬𝐬𝐢𝐨𝐧

Mode 𝑦 𝑖 : 𝐱 𝑖 ∈ 𝑅ℓ 𝐂𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧

function 𝐬𝐩𝐥𝐢𝐭 𝑅ℓ, 𝒯ℓ

if stopping criterion fulfilled

return 𝑅ℓ

else

Go through all possible splits 𝑥𝑗 < 𝑠 for all input variables

Pick pair 𝑗, 𝑠 that minimizes the chosen loss

Split the region 𝑅ℓ into two half-spaces 𝑅ℓ and 𝑅ℓ+1

Split the data 𝒯ℓ into two parts, 𝒯ℓ and 𝒯ℓ+1, respectively

return 𝑅ℓ, 𝑇ℓ and 𝑅ℓ+1, 𝑇ℓ+1

1. Find the region 𝑅ℓ in which 𝐱∗ belongs to

2. Return the prediction ො𝑦 𝐱∗ = ො𝑦ℓ

Test Data: 𝐱∗

Output: ො𝑦 𝐱∗

Example of stopping criterion
No further splits if there are less than a certain number of
training data points in the corresponding region

How deep should be a decision tree?

▪ The depth of a decision tree (the maximum distance between the root node and any leaf node) has a big impact on the
final predictions

▪ The tree depth impacts the predictions in a somewhat similar way to the hyperparameter 𝑘 in 𝑘-NN

▪ Not too shallow (or small): Need to handle important but possibly subtle distinctions in data

▪ Not too deep (or big): Avoid over-fitting training examples

▪ Optimal tree depth (or size): Is a trade-off between flexibility and rigidity of the final model

▪ Typically, we desire small trees with informative nodes near the root

28

𝑘NN vs Decision Trees

▪ Advantages of Decision trees over 𝒌NNs

▪ Simple to deal with poorly scaled data

▪ Fast at test time (no need to calculate distances like in kNN)

▪ More interpretable

▪ Advantages of 𝒌NNs over Decision trees

▪ Fewer hyperparameters (need to decide on just the value of 𝑘)

▪ Can incorporate interesting distance measures

29

	Slide 1: APL 405: Machine Learning for Mechanics Lecture 4: Decision Trees
	Slide 2: Supervised Learning: Recap of kNN
	Slide 3: Idea of decision trees (CART)
	Slide 4: Idea of decision trees (CART)
	Slide 5: Idea of decision trees (CART)
	Slide 6: Idea of decision trees (CART)
	Slide 8: Structure of a Decision Tree
	Slide 9: Structure of a Decision Tree
	Slide 10: Decision boundaries of a Decision Tree
	Slide 11: Make a prediction using a Classification tree
	Slide 12: Structure of Decision Trees
	Slide 13: Learning Decision Trees
	Slide 14: Learning Classification Trees using Recursive Binary Splitting
	Slide 15: Learning Classification Trees using Recursive Binary Splitting
	Slide 16: Learning Classification Trees using Recursive Binary Splitting
	Slide 17: Learning Classification Trees using Recursive Binary Splitting
	Slide 18: Prediction errors for classification trees
	Slide 19: Calculating the loss for 1st split
	Slide 20: Calculating the loss for 1st split
	Slide 21: Calculating the loss for 1st split
	Slide 22: Calculating the loss for 1st split
	Slide 23: Calculating the loss for 1st split
	Slide 24: Learning Classification Trees using Recursive Binary Splitting
	Slide 25: Calculating the loss for 2nd split
	Slide 26: Learning Regression Trees using Recursive Binary Splitting
	Slide 27: Algorithm for CART using Recursive Binary Splitting
	Slide 28: How deep should be a decision tree?
	Slide 29: kNN vs Decision Trees

