
APL 405: Machine Learning for Mechanics

Lecture 15: Convolutional Neural Network

by

Rajdip Nayek

Assistant Professor,
Applied Mechanics Department,

IIT Delhi

Instructor email: rajdipn@am.iitd.ac.in

Introduction

▪ We looked at fully connected neural networks which has each unit of previous layer is connected to all other units
of the next layer

▪ Drawbacks of fully connected neural nets:

▪ There are a lot of connections. Ex. 𝑝 units in previous layer, 𝑞 units in the next layer, then 𝑝𝑞 connections

▪ If we are trying to classify an image, we flatten the 2D image into vectors, which discards the spatial
structure/information of the image

▪ When dealing with images, the nearby pixels are typically related to each other, and we want to exploit this
neighbourhood (or local) information to build more efficient neural networks

2

Grayscale vs Colored images

3

• Grayscale images have a single channel
(depth = 1)

• Colored images have more than one channel
(depth > 1)

• Ex. RGB images has 3 channels

Grayscale Image

Color Image
h

e
ig

h
t

width
h

e
ig

h
t

width

From fully-connected layers to Convolution layers

▪ Suppose we want to train a network (with 1000 FC hidden
units) that takes a 200 × 200 colored (RGB) image as input

▪ What is the problem?

▪ Too many parameters! (Very complex, more chance of
overfitting)

Input size = 200 × 200 × 3= 1,20,000
Parameters = 1,20,000 × 1000 = 12 × 107

4

From fully-connected layers to Convolution layers

▪ Suppose we want to train a network (with 1000 hidden
units) that takes a 200 × 200 RGB image as input

▪ What is the problem?

▪ Too many parameters! (Very complex, morechance of
overfitting)

Input size = 200 × 200 × 3= 1,20,000
Parameters = 1,20,000 × 1000 = 12 × 107

▪ Too translation sensitive− Precise locations of objects in
the image matter too much

− If you translate the objects in the image to different
locations, you may have to re-train a fully-connected
MLP, else it may fail to classify the outputs correctly

▪ We can do much better with CNN for images

From fully-connected layers to Convolution layers

▪ “Whereʼs Waldo?”
In the game, Waldo shows up
somewhere in some unlikely
location. The readerʼs goal is to
locate him

From fully-connected layers to Convolution layers

▪ “Whereʼs Waldo?”
In the game, Waldo shows up
somewhere in some unlikely
location. The readerʼs goal is to
locate him

▪ We could sweep the image with a
Waldo detector that could assign
a score to each patch, indicating
how likely the patch contains
Waldo

From fully-connected layers to Convolution layers

▪ “Whereʼs Waldo?”
In the game, Waldo shows up
somewhere in some unlikely
location. The readerʼs goal is to
locate him

▪ We could sweep the image with a
Waldo detector that could assign
a score to each patch, indicating
how likely the patch contains
Waldo

From fully-connected layers to Convolution layers

▪ “Whereʼs Waldo?”
In the game, Waldo shows up
somewhere in some unlikely
location. The readerʼs goal is to
locate him

▪ We could sweep the image with a
Waldo detector that could assign
a score to each patch, indicating
how likely the patch contains
Waldo

▪ The patch with maximum score is
where Waldo should be located

▪ As this local patch sweeps the
entire image, it does not matter
where Waldo is located

From fully-connected layers to Convolution layers

▪ “Whereʼs Waldo?”
In the game, Waldo shows up
somewhere in some unlikely
location. The readerʼs goal is to
locate him

▪ We could sweep the image with a
Waldo detector that could assign
a score to each patch, indicating
how likely the patch contains
Waldo

▪ CNNs systematize this idea of
translation invariance and
localised feature detection, via
convolutions and max pooling,
with much less parameters

From fully-connected layers to Convolution layers

• CNNs systematize this idea of translation invariance and localised feature detection,
via convolutions and max pooling, with much less parameters

• CNNs uses multiple kernels (“Waldo detectors”) that detects different features

32 × 32 image Feature
maps

Feature
maps

Feature
maps

Feature
maps

12

What is convolution?

1D Convolution

▪ Convolution of two scalar-valued functions 𝑤(𝑥) and 𝑔(𝑥) is defined as:

▪ Whenever we have discrete objects (arrays), the integral turns into a sum:

▪ The array 𝒈 is the input

▪ The array 𝒘 is called the filter (or kernel)

13

= ?

𝑠 𝑖 =

𝑎

𝑤 𝑖 − 𝑎 𝑔 𝑎

𝑠 𝑥 = 𝑤 ∗ 𝑔 (𝑥) = න𝑤 𝑥 − 𝑎 𝑔 𝑎 𝑑𝑎

1 2 3 4 5 60.1 0.2 0.3 0.4

𝑤[0] 𝑤[1] 𝑤[2] 𝑤[3]

*

𝑔[0] 𝑔[1] 𝑔[2] 𝑔[3] 𝑔[4] 𝑔[5]

1D Convolution

▪ Convolution of two scalar-valued functions 𝑤(𝑥) and 𝑔(𝑥) is defined as:

▪ Whenever we have discrete objects (arrays), the integral turns into a sum:

▪ The array 𝒈 is the input

▪ The array 𝒘 is called the filter (or kernel)

▪ Flip-and-filter

▪ Slide the filter over the input and
compute windowed dot product

14

𝑠 𝑖 =

𝑎

𝑤 𝑖 − 𝑎 𝑔 𝑎

2

1 2 3 4 5 6

𝑠[3] 𝑠[4] 𝑠[5]

0.4 0.3 0.2 0.1

𝑤[3] 𝑤[2] 𝑤[1] 𝑤[0]

(flipped)

=

𝑠 3 = 𝑤 3 𝑔 0 + 𝑤 2 𝑔 1 + 𝑤 1 𝑔 2 + 𝑤 0 𝑔 3

𝑔[0] 𝑔[1] 𝑔[2] 𝑔[3] 𝑔[4] 𝑔[5]

?

𝑠 𝑥 = 𝑤 ∗ 𝑔 (𝑥) = න𝑤 𝑥 − 𝑎 𝑔 𝑎 𝑑𝑎

1 2 3 4 5 60.1 0.2 0.3 0.4

𝑤[0] 𝑤[1] 𝑤[2] 𝑤[3]

*

𝑔[0] 𝑔[1] 𝑔[2] 𝑔[3] 𝑔[4] 𝑔[5]

Convolution in 1D

▪ Convolution of two scalar-valued functions 𝑤(𝑥) and 𝑔(𝑥) is defined as:

▪ Whenever we have discrete objects (arrays), the integral turns into a sum:

▪ The array 𝒈 is the input

▪ The array 𝒘 is called the filter (or kernel)

▪ Flip-and-filter

▪ Slide the filter over the input and
compute windowed dot product

15

2 4

1 2 3 4 5 6

𝑠[3] 𝑠[4] 𝑠[5]

0.4 0.3 0.2 0.1

𝑤[3] 𝑤[2] 𝑤[1] 𝑤[0]

1 2 3 4 5 60.1 0.2 0.3 0.4

𝑤[0] 𝑤[1] 𝑤[2] 𝑤[3]

* =

𝑠 4 = 𝑤 3 𝑔 1 + 𝑤 2 𝑔 2 + 𝑤 1 𝑔 3 + 𝑤 0 𝑔 4

𝑔[0] 𝑔[1] 𝑔[2] 𝑔[3] 𝑔[4] 𝑔[5]

𝑔[0] 𝑔[1] 𝑔[2] 𝑔[3] 𝑔[4] 𝑔[5]

?

𝑠 𝑥 = 𝑤 ∗ 𝑔 (𝑥) = න𝑤 𝑥 − 𝑎 𝑔 𝑎 𝑑𝑎

𝑠 𝑖 =

𝑎

𝑤 𝑖 − 𝑎 𝑔 𝑎

1D Convolution

▪ Convolution of two scalar-valued functions 𝑤(𝑥) and 𝑔(𝑥) is defined as:

▪ Whenever we have discrete objects (arrays), the integral turns into a sum:

▪ The array 𝒈 is the input

▪ The array 𝒘 is called the filter (or kernel)

▪ Flip-and-filter

▪ Slide the filter over the input and
compute windowed dot product

▪ Here the input (and the kernel) is 1D

16

2 4 5

1 2 3 4 5 6

𝑠[3] 𝑠[4] 𝑠[5]

0.4 0.3 0.2 0.1

𝑤[3] 𝑤[2] 𝑤[1] 𝑤[0]

1 2 3 4 5 60.1 0.2 0.3 0.4

𝑤[0] 𝑤[1] 𝑤[2] 𝑤[3]

* =

𝑠 5 = 𝑤 3 𝑔 2 + 𝑤 2 𝑔 3 + 𝑤 1 𝑔 4 + 𝑤 0 𝑔 5

𝑔[0] 𝑔[1] 𝑔[2] 𝑔[3] 𝑔[4] 𝑔[5]

𝑔[0] 𝑔[1] 𝑔[2] 𝑔[3] 𝑔[4] 𝑔[5]

?

𝑠 𝑖 =

𝑎

𝑤 𝑖 − 𝑎 𝑔 𝑎

𝑠 𝑥 = 𝑤 ∗ 𝑔 (𝑥) = න𝑤 𝑥 − 𝑎 𝑔 𝑎 𝑑𝑎

1D Convolution to 2D Convolution

▪ Convolution is more like doing a flipped cross-correlation operation

▪ The filters (or kernels) will resemble the weights in CNN (as we will see soon)

▪ Most machine learning libraries just implement a moving window cross-correlation (and ignore flipping) since it does not
matter much whether you learn a flipped set of weights or unflipped set of weights

▪ How does convolution (think more like cross-correlation) look in 2D?

▪ Let’s now consider 2D grayscale images (has depth of 1) and 2D kernels

17

0 1 2

3 4 5

6 7 8

0 1

2 3
*

Input Kernel

=

Output

1D Convolution to 2D Convolution

▪ Convolution is more like doing a flipped cross-correlation operation

▪ The filters (or kernels) will resemble the weights in CNN (as we will see soon)

▪ Most machine learning libraries just implement a moving window cross-correlation (and ignore flipping) since it does not
matter much whether you learn a flipped set of weights or unflipped set of weights

▪ How does convolution (think more like cross-correlation) look in 2D?

▪ Let’s now consider 2D grayscale images (has depth of 1) and 2D kernels

18

0 1 2

3 4 5

6 7 8

0 1

2 3
*

Input Kernel

=
19

Output

2D Convolution

▪ Convolution is more like a moving window flipped cross-correlation operation

▪ The filters (or kernels) will resemble the weights in CNN (as we will see soon)

▪ Most machine learning libraries just implement a moving window cross-correlation (and ignore flipping) since it does not
matter much whether you learn a flipped set of weights or unflipped set of weights

▪ How does convolution (think cross-correlation from now on) look in 2D?

▪ Let’s now consider 2D grayscale images (has depth of 1) and 2D kernels

19

0 1 2

3 4 5

6 7 8

0 1

2 3
*

Input Kernel

=
19 25

Output

2D Convolution

▪ Convolution is more like a moving window flipped cross-correlation operation

▪ The filters (or kernels) will resemble the weights in CNN (as we will see soon)

▪ Most machine learning libraries just implement a moving window cross-correlation (and ignore flipping) since it does not
matter much whether you learn a flipped set of weights or unflipped set of weights

▪ How does convolution (think cross-correlation from now on) look in 2D?

▪ Let’s now consider 2D grayscale images (has depth of 1) and 2D kernels

20

0 1 2

3 4 5

6 7 8

0 1

2 3
*

Input Kernel

=
19 25

37

Output

2D Convolution

▪ Convolution is more like a moving window flipped cross-correlation operation

▪ The filters (or kernels) will resemble the weights in CNN (as we will see soon)

▪ Most machine learning libraries just implement a moving window cross-correlation (and ignore flipping) since it does not
matter much whether you learn a flipped set of weights or unflipped set of weights

▪ How does convolution (think cross-correlation from now on) look in 2D?

▪ Let’s now consider 2D grayscale images (has depth of 1) and 2D kernels

21

0 1 2

3 4 5

6 7 8

0 1

2 3
*

Input Kernel

=
19 25

37 43

Output

2D Convolution

▪ Despite the simplicity of the operation, convolution can do some pretty interesting things

▪ Let’s look at some examples of convolutions with grayscale images

24

*

1 1 1

1 1 1

1 1 1

=

Blur kernel: Takes an average of all the neigbouring pixels

2D Convolution

▪ Despite the simplicity of the operation, convolution can do some pretty interesting things

▪ Let’s look at some examples of convolutions with grayscale images

25

*

0 -1 0

-1 5 -1

0 -1 0

=

Sharpen kernel: Emphasizes differences in adjacent pixel values

2D Convolution

▪ Despite the simplicity of the operation, convolution can do some pretty interesting things

▪ Let’s look at some examples of convolutions with grayscale images

26

*

-1 0 1

-2 0 2

-1 0 1

=

Vertical edge detector: Finds edges from darker to brighter intensities

2D Convolution

27

• We just slide the kernel over the input
image

• Each time we slide the kernel we get
one value in the output

-1 0 1

-2 0 2

-1 0 1

2D Convolution

28

• We just slide the kernel over the input
image

• Each time we slide the kernel we get
one value in the output

-1 0 1

-2 0 2

-1 0 1

2D Convolution

29

• We just slide the kernel over the input
image

• Each time we slide the kernel we get
one value in the output

-1 0 1

-2 0 2

-1 0 1

2D Convolution

30

• We just slide the kernel over the input
image

• Each time we slide the kernel we get
one value in the output

-1 0 1

-2 0 2

-1 0 1

2D Convolution

31

• We just slide the kernel over the input
image

• Each time we slide the kernel we get
one value in the output

-1 0 1

-2 0 2

-1 0 1

2D Convolution

32

• We just slide the kernel over the input
image

• Each time we slide the kernel we get
one value in the output

-1 0 1

-2 0 2

-1 0 1

2D Convolution

33

• We just slide the kernel over the input
image

• Each time we slide the kernel we get
one value in the output

-1 0 1

-2 0 2

-1 0 1

2D Convolution

34

• We just slide the kernel over the input
image

• Each time we slide the kernel we get
one value in the output

-1 0 1

-2 0 2

-1 0 1

2D Convolution

35

• We just slide the kernel over the input
image

• Each time we slide the kernel we get
one value in the output

-1 0 1

-2 0 2

-1 0 1

2D Convolution

36

• We just slide the kernel over the input
image

• Each time we slide the kernel we get
one value in the output

• The resulting output is called a feature map

-1 0 1

-2 0 2

-1 0 1

Feature map

2D Convolution

37

• We just slide the kernel over the input
image

• Each time we slide the kernel we get
one value in the output

• The resulting output is called a feature map

• We can use multiple filters to get multiple
feature maps

• How convolutions will happen for colored
images?

-1 0 1

-2 0 2

-1 0 1

Multiple Features

0 -1 0

-1 5 -1

0 -1 0

What would happen in case of colored images?

38

• Grayscale images have a single channel
(depth = 1)

• Colored images have more than one channel
(depth > 1)

• Ex. RGB images has 3 channels

• How does convolution happen in 3D case?

• Well the kernel or filter will be 3D too (i.e. will
have same number of channels as the input)

Grayscale Image

Color Image
h

e
ig

h
t

width
h

e
ig

h
t

width

What would happen in case of colored images?

39

• Grayscale images have a single channel
(depth = 1)

• Colored images have more than one channel
(depth > 1)

• Ex. RGB images has 3 channels

• How does convolution happen in 3D case?

• Well the kernel or filter will be 3D too (i.e. will
have same number of channels as the input)

• Let’s see how the 3D convolutions happen

Input

A single 3D kernel

40

RGB Input (3 channels) A single 3D kernel

0 1 2

3 4 5

6 7 8

-2 -1 0 1

2 3 4 5

6 7 8 9

0 -4 0

3 0 5

2 -1 8

-1 1 2

3 2 0

6 0 1

-3 -2 -1 0

1 2 3 4

5 6 7 8

-6 -2 3 0

1 2 3 4

5 4 2 8

*

-2 -1 0 1

2 3 4 5

6 7 8 9

0 1 2

3 4 5

6 7 8
* +

-3 -2 -1 0

1 2 3 4

5 6 7 8

0 -4 0

3 0 5

2 -1 8
*

-6 -2 3 0

1 2 3 4

5 4 2 8

*

+

-1 1 2

3 2 0

6 0 1

41

-2 -1 0 1

2 3 4 5

6 7 8 9

0 1 2

3 4 5

6 7 8

*

+

-3 -2 -1 0

1 2 3 4

5 6 7 8

0 -4 0

3 0 5

2 -1 8

-6 -2 3 0

1 2 3 4

5 4 2 8

*

+

-1 1 2

3 2 0

6 0 1

*

(-2)(0) + (-1)(1) + (0)(2)
+ (2)(3) + (3)(4) + (4)(5)
+ (6)(6) + (7)(7) + (8)(8)

323

+ +
(-3)(0) + (-2)(-4) + (-1)(0)

+ (1)(3) + (2)(0) + (3)(5)
+ (5)(2) + (6)(-1) + (7)(8)

(-6)(-1) + (-2)(1) + (3)(2)
+ (1)(3) + (2)(2) + (3)(0)
+ (5)(6) + (4)(0) + (2)(1)

188 86 49

=

42

-2 -1 0 1

2 3 4 5

6 7 8 9

0 1 2

3 4 5

6 7 8

*

+

-3 -2 -1 0

1 2 3 4

5 6 7 8

0 -4 0

3 0 5

2 -1 8

-6 -2 3 0

1 2 3 4

5 4 2 8

*

+

-1 1 2

3 2 0

6 0 1

*

(-1)(0) + (0)(1) + (1)(2)
+ (3)(3) + (4)(4) + (5)(5)
+ (7)(6) + (8)(7) + (9)(8)

323 370

+ +
(-2)(0) + (-1)(-4) + (0)(0)

+ (2)(3) + (3)(0) + (4)(5)
+ (6)(2) + (7)(-1) + (8)(8)

(-2)(-1) + (3)(1) + (0)(2)
+ (2)(3) + (3)(2) + (4)(0)
+ (4)(6) + (2)(0) + (8)(1)

222 99 49

=

What would happen in case of colored images?

43

• Grayscale images have a single channel
(depth = 1)

• Colored images have more than one channel
(depth > 1)

• Ex. RGB images has 3 channels

• How does convolution happen in 3D case?

• Well the kernel or filter will be 3D too (i.e. will
have same number of channels as the input)

• The kernel moves along the width and height
(and not along the depth)

• Therefore, the feature output is 2D!

3D Input

2D Output feature

A single 3D kernel

What would happen in case of colored images?

44

• Grayscale images have a single channel
(depth = 1)

• Colored images have more than one channel
(depth > 1)

• Ex. RGB images has 3 channels

• How does convolution happen in 3D case?

• Well the kernel or filter will be 3D too (i.e. will
have same number of channels as the input)

• The kernel moves along the width and height
(and not along the depth)

• Therefore, the feature output is 2D!

• Once again, if we apply multiple 3D filters, we
will get multiple 2D output features

3D Input

𝐾 2D Output features

Kernel 1 Kernel 𝐾

⋯

⋯

Convolution followed by linear rectification

45

It is common to apply a ReLU nonlinear activation on the output feature following convolution: 𝑦 = max(𝑧, 0)

Why might we do this?

• Convolution is a linear operation. Passing
the linear output through nonlinear
activation leads to more powerful features

• While pooling the results, two edges in
opposite directions shouldn’t cancel

• It has been reported that nonlinear
activations (like ReLU or ELU) when used
after convolutional layers given better
performance

46

What are the relations between input sizes, kernel sizes, and output sizes?

Relation between input sizes, kernel sizes, and output sizes

▪ So far we have not said anything explicit about the dimensions of
the

▪ Inputs

▪ Kernels

▪ Outputs

▪ the relations between them

▪ We will see how they are related but before that we will discuss
zero-padding and stride

47

Input

Feature

Kernel

*

4 × 6 3 × 3

2 × 4

Zero padding

▪ Note that we can’t place the kernel centred at the corners or at
boundaries of our image

▪ Thus any interesting information on the boundaries of the
original image is lost

48

Input

Kernel

Zero padding

▪ Note that we can’t place the kernel centred at the corners or at
boundaries of our image

▪ Thus any interesting information on the boundaries of the
original image is lost

▪ This loss of information results in an output feature size
smaller than the input image

▪ If input size is 𝑛ℎ × 𝑛𝑤, kernel size is 𝑘ℎ × 𝑘𝑤, then output

feature size 𝑓ℎ × 𝑓𝑤 is related as follows:

𝑓ℎ = 𝑛ℎ − 𝑘ℎ + 1

𝑓𝑤 = 𝑛𝑤 − 𝑘𝑤 + 1

49

Input

Feature

Kernel

*

4 × 6 3 × 3

2 × 4

Zero padding

▪ Note that we can’t place the kernel centred at the corners or at
boundaries of our image

▪ Thus any interesting information on the boundaries of the
original image is lost

▪ This loss of information results in an output feature size
smaller than the input image

▪ If input size is 𝑛ℎ × 𝑛𝑤, kernel size is 𝑘ℎ × 𝑘𝑤, then output

feature size 𝑓ℎ × 𝑓𝑤 is related as follows:

𝑓ℎ = 𝑛ℎ − 𝑘ℎ + 1

𝑓𝑤 = 𝑛𝑤 − 𝑘𝑤 + 1

▪ As the size of the kernel increases, this output size reduces
even more

50

Input

Feature

Kernel

*

4 × 6 4 × 4

1 × 3

Zero padding

▪ One straightforward solution to this problem is to add zero pixels
around the boundary of our input image, thus increasing the
effective size of the image

▪ This means we pad zeros of width 𝑝𝑤 on left and right, and pad
zeros of height 𝑝ℎ on top and bottom

▪ The output feature shape will be 𝑓ℎ × 𝑓𝑤:

𝑓ℎ = 𝑛ℎ − 𝑘ℎ + 2𝑝𝑤 + 1

𝑓𝑤 = 𝑛𝑤 − 𝑘𝑤 + 2𝑝ℎ + 1

51

0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0

Input

4 × 6

Zero-padded Input

6 × 8

Kernel

3 × 3

Zero padding

▪ One straightforward solution to this problem is to add zero pixels
around the boundary of our input image, thus increasing the
effective size of the image

▪ This means we pad zeros of width 𝑝𝑤 on left and right, and pad
zeros of height 𝑝ℎ on top and bottom

▪ The output feature shape will be 𝑓ℎ × 𝑓𝑤:

𝑓ℎ = 𝑛ℎ − 𝑘ℎ + 2𝑝𝑤 + 1

𝑓𝑤 = 𝑛𝑤 − 𝑘𝑤 + 2𝑝ℎ + 1

▪ Usual values: 𝑝ℎ =
𝑘ℎ−1

2
and 𝑝𝑤 =

𝑘𝑤−1

2

▪ It becomes easy to work with odd-sized kernels like 3x3, 5x5, 7x7
as zero-padding will give an integer number, else ceil the value

52

0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0

4 × 6

Zero-padded Input

6 × 8

Kernel

3 × 3

*

Output feature

Stride

▪ When computing the cross-correlation, we typically move our
kernel by one interval along right and/or downwards

▪ Stride defines the intervals at which the kernel is applied

▪ By default, we slide one element at a time

▪ However, sometimes, either for computational efficiency or
because we wish to downsample (reduce size of output), we
move our window more than one element at a time, skipping
the intermediate locations

▪ For such cases, the stride would be greater than 1

53

Stride

▪ When the stride along the height is 𝑠ℎ and the stride along the width is 𝑠𝑤, the output shape 𝑓ℎ × 𝑓𝑤 is

𝑛ℎ − 𝑘ℎ + 2𝑝ℎ
𝑠ℎ

+ 1 ×
𝑛𝑤 − 𝑘𝑤 + 2𝑝𝑤

𝑠𝑤
+ 1

54

Stride

▪ When the stride along the height is 𝑠ℎ and the stride along the width is 𝑠𝑤, the output shape 𝑓ℎ × 𝑓𝑤 is

𝑛ℎ − 𝑘ℎ + 2𝑝ℎ
𝑠ℎ

+ 1 ×
𝑛𝑤 − 𝑘𝑤 + 2𝑝𝑤

𝑠𝑤
+ 1

▪ Typically, equal strides are taken, 𝑠ℎ = 𝑠𝑤 = 𝑆. Let’s consider an example with 𝑆 = 2

55

0 0 0 0 0 0 0 0

0 1 2 3 4 4 5 0

0 6 0 7 8 9 0 0

0 4 1 7 2 9 4 0

0 9 4 9 1 4 2 0

0 0 0 0 0 0 0 0

4 × 6

0 1 2

3 4 5

6 7 8

Kernel

3 × 3

*

Input

=

2 × 3

Output feature

Stride

▪ When the stride along the height is 𝑠ℎ and the stride along the width is 𝑠𝑤, the output shape 𝑓ℎ × 𝑓𝑤 is

𝑛ℎ − 𝑘ℎ + 2𝑝ℎ
𝑠ℎ

+ 1 ×
𝑛𝑤 − 𝑘𝑤 + 2𝑝𝑤

𝑠𝑤
+ 1

▪ Typically, equal strides are taken, 𝑠ℎ = 𝑠𝑤 = 𝑆. For stride 𝑆 = 2, the following output is obtained

56

0 0 0 0 0 0 0 0

0 1 2 3 4 4 5 0

0 6 0 7 8 9 0 0

0 4 1 7 2 9 4 0

0 9 4 9 1 4 2 0

0 0 0 0 0 0 0 0

0 1 2

3 4 5

6 7 8

Kernel

3 × 3

*

Input

=
56

2 × 3

Output feature

4 × 6

Stride

▪ When the stride along the height is 𝑠ℎ and the stride along the width is 𝑠𝑤, the output shape 𝑓ℎ × 𝑓𝑤 is

𝑛ℎ − 𝑘ℎ + 2𝑝ℎ
𝑠ℎ

+ 1 ×
𝑛𝑤 − 𝑘𝑤 + 2𝑝𝑤

𝑠𝑤
+ 1

▪ Typically, equal strides are taken, 𝑠ℎ = 𝑠𝑤 = 𝑆. For stride 𝑆 = 2, the following output is obtained

57

0 0 0 0 0 0 0 0

0 1 2 3 4 4 5 0

0 6 0 7 8 9 0 0

0 4 1 7 2 9 4 0

0 9 4 9 1 4 2 0

0 0 0 0 0 0 0 0

0 1 2

3 4 5

6 7 8

Kernel

3 × 3

*

Input

=
56 151

2 × 3

Output feature

4 × 6

Stride

▪ When the stride along the height is 𝑠ℎ and the stride along the width is 𝑠𝑤, the output shape 𝑓ℎ × 𝑓𝑤 is

𝑛ℎ − 𝑘ℎ + 2𝑝ℎ
𝑠ℎ

+ 1 ×
𝑛𝑤 − 𝑘𝑤 + 2𝑝𝑤

𝑠𝑤
+ 1

▪ Typically, equal strides are taken, 𝑠ℎ = 𝑠𝑤 = 𝑆. For stride 𝑆 = 2, the following output is obtained

58

0 0 0 0 0 0 0 0

0 1 2 3 4 4 5 0

0 6 0 7 8 9 0 0

0 4 1 7 2 9 4 0

0 9 4 9 1 4 2 0

0 0 0 0 0 0 0 0

0 1 2

3 4 5

6 7 8

Kernel

3 × 3

*

Input

=
56 151 164

2 × 3

Output feature

4 × 6

Stride

▪ When the stride along the height is 𝑠ℎ and the stride along the width is 𝑠𝑤, the output shape 𝑓ℎ × 𝑓𝑤 is

𝑛ℎ − 𝑘ℎ + 2𝑝ℎ
𝑠ℎ

+ 1 ×
𝑛𝑤 − 𝑘𝑤 + 2𝑝𝑤

𝑠𝑤
+ 1

▪ Typically, equal strides are taken, 𝑠ℎ = 𝑠𝑤 = 𝑆. For stride 𝑆 = 2, the following output is obtained

59

0 0 0 0 0 0 0 0

0 1 2 3 4 4 5 0

0 6 0 7 8 9 0 0

0 4 1 7 2 9 4 0

0 9 4 9 1 4 2 0

0 0 0 0 0 0 0 0

0 1 2

3 4 5

6 7 8

Kernel

3 × 3

*

Input

=
56 151 164

122

2 × 3

Output feature

4 × 6

Stride

▪ When the stride along the height is 𝑠ℎ and the stride along the width is 𝑠𝑤, the output shape 𝑓ℎ × 𝑓𝑤 is

𝑛ℎ − 𝑘ℎ + 2𝑝ℎ
𝑠ℎ

+ 1 ×
𝑛𝑤 − 𝑘𝑤 + 2𝑝𝑤

𝑠𝑤
+ 1

▪ Typically, equal strides are taken, 𝑠ℎ = 𝑠𝑤 = 𝑆. For stride 𝑆 = 2, the following output is obtained

60

0 0 0 0 0 0 0 0

0 1 2 3 4 4 5 0

0 6 0 7 8 9 0 0

0 4 1 7 2 9 4 0

0 9 4 9 1 4 2 0

0 0 0 0 0 0 0 0

0 1 2

3 4 5

6 7 8

Kernel

3 × 3

*

Input

=
56 151 164

122 159

2 × 3

Output feature

4 × 6

Stride

▪ When the stride along the height is 𝑠ℎ and the stride along the width is 𝑠𝑤, the output shape 𝑓ℎ × 𝑓𝑤 is

𝑛ℎ − 𝑘ℎ + 2𝑝ℎ
𝑠ℎ

+ 1 ×
𝑛𝑤 − 𝑘𝑤 + 2𝑝𝑤

𝑠𝑤
+ 1

▪ Typically, equal strides are taken, 𝑠ℎ = 𝑠𝑤 = 𝑆. For stride 𝑆 = 2, the following output is obtained

61

0 0 0 0 0 0 0 0

0 1 2 3 4 4 5 0

0 6 0 7 8 9 0 0

0 4 1 7 2 9 4 0

0 9 4 9 1 4 2 0

0 0 0 0 0 0 0 0

0 1 2

3 4 5

6 7 8

Kernel

3 × 3

*

Input

=
56 151 164

122 159 121

2 × 3

Output feature

4 × 6

Depth of the output layer

▪ Finally, let’s come to the depth 𝑓𝑑 of the output feature layer

▪ If we have multi-channel inputs, depth will be 𝑛𝑑 > 1

▪ Each 3D kernel will give us one 2D output feature

▪ 𝐾 kernels will give us 𝐾 such 2D output features

▪ We can think of the resulting output feature as 𝑓ℎ × 𝑓𝑤 × 𝑓𝑑
volume

▪ Thus, 𝑓𝑑 = 𝐾

62

𝑛𝑑

𝑛ℎ

𝑛𝑤
𝑓𝑑

𝑓𝑤

𝑓ℎ

= 𝐾

Example for determining sizes

63

1

32

32

𝑓𝑑

𝑓𝑤

𝑓ℎ
5

5

1

∗

• 6 kernels
• Stride, 𝑆 = 1
• Padding, 𝑃 = 0

▪ Output layer dimensions

𝑓ℎ =
𝑛ℎ − 𝑘ℎ + 2𝑃

𝑆
+ 1

𝑓𝑤 =
𝑛𝑤 − 𝑘𝑤 + 2𝑃

𝑆
+ 1

𝑓𝑑 = 𝐾 (number of kernels)

Example for determining sizes

64

3

227

227

𝑓𝑑

𝑓𝑤

𝑓ℎ
11

11

3

∗

• 96 kernels
• Stride, 𝑆 = 4
• Padding, 𝑃 = 0

▪ Output layer dimensions

𝑓ℎ =
𝑛ℎ − 𝑘ℎ + 2𝑃

𝑆
+ 1

𝑓𝑤 =
𝑛𝑤 − 𝑘𝑤 + 2𝑃

𝑆
+ 1

𝑓𝑑 = 𝐾 (number of kernels)

65

• What is the connection between this operation (convolution) and
neural networks?

• We will try to understand this by considering the task of image
classification

Output features for image classification

66

Input

Face, Hands, Legs

Kernel

Feature map Classifier output

Edge detector

• Instead of using handcrafted kernels such as edge detectors can we learn (or optimize) meaningful kernels/filters
in addition to learning the weights of the classifier?

• Even better, if we can learn multiple meaningful kernels/filters in addition to the weights of the classifier

• In CNN, we treat these kernels as parameters and learn them in addition to the weights of the classifier (using
back propagation) in CNN

• But how is CNN different than fully-connected feedforward neural networks?

Optimize the
weights of
classifier
based on

training data

Full connected NN vs CNN

67

• This is what a regular fully-connected feed-forward
neural network looks like

• It is dense, there are many connections

• For example, all the 16 input neurons are contributing to

the computation of ℎ11 = ℎ1
1

• Contrast this to what happens in the case of convolution

Full connected NN vs CNN

68

• Only a few local neurons participate in the computation

of ℎ11 = ℎ1
1

• For example, only pixels 1, 2, 5, 6 contribute to ℎ1
1

Full connected NN vs CNN

69

• Only a few local neurons participate in the computation

of ℎ11 = ℎ1
1

• For example, only pixels 1, 2, 5, 6 contribute to ℎ1
1

• For example, only pixels 3, 4, 7, 8 contribute to

ℎ12 = ℎ2
1

Full connected NN vs CNN

70

• Only a few local neurons participate in the computation

of ℎ11 = ℎ1
1

• For example, only pixels 1, 2, 5, 6 contribute to ℎ1
1

• The connections are much sparser

• This sparse connectivity reduces the number of
parameters in the model

• But is sparse connectivity good? Aren’t we losing
information (by losing interactions between some input
pixels) ?

Full connected NN vs CNN

71

• But is sparse connectivity good? Aren’t we losing
information (by losing interactions between some input
pixels) ?

• It turns out we are not losing information/interactions

• The two highlighted neurons (𝑥1 and 𝑥5) do not interact
in hidden layer 1

• But they indirectly contribute to the computation of 𝑔3
and hence interact indirectly

Full connected NN vs CNN

72

• Another characteristic of CNNs is weight sharing

• Imagine if we use an edge detection kernel

• Then the same kernel is passed over the all locations of

the image to produce ℎ1
1

, ℎ2
1

, ℎ3
1

, ℎ4
1

, ⋯

• Since the kernel weights remain same as we sweep
across all locations of the image, it is as if we share the
weights across all locations of the image

Full connected NN vs CNN

73

• Another characteristic of CNNs is weight sharing

• Imagine if we use an edge detection kernel

• Then the same kernel is passed over the all locations of

the image to produce ℎ1
1

, ℎ2
1

, ℎ3
1

, ℎ4
1

, ⋯

• Since the kernel weights remain same as we sweep
across all locations of the image, it is as if we share the
weights across all locations of the image

• Note, we can have many such kernels and each kernel
will be shared by all locations in the image

Kernel 1 Kernel 2 Kernel 𝐾

⋯

74

• So far we have talked a lot on convolution layers

• Saw how kernels are convolved with inputs to produce features

• Understood that kernels are to be learned (or optimized), not manually set

• Let’s look at CNN for a moment

Convolutional neural networks

75

• So a CNN has alternate convolution and pooling layers

• What does a pooling layer do?

32 × 32 image Feature
maps

Feature
maps

Feature
maps

Feature
maps

Pooling

76

• We want to gradually reduce the spatial resolution of our
hidden representations while aggregating meaningful
features

• Pooling helps in reducing the spatial resolution

• Like convolutional layer, pooling operators consist of a
fixed-shape window that is slid over all regions of the
input according to its stride

• However unlike convolutional layer, the pooling layer
contains no parameters (there is no kernel)

• Mostly, we take the maximum of the elements in the
pooling window − max pooling

1 2 3 4 4 5

6 0 7 8 9 0

4 1 7 2 9 4

9 4 9 1 4 2

6

2 × 3

Input

4 × 6

2 × 2
max

pooling

Stride = 2
Padding = 0

max(1,2,6,0)

Pooling

77

• We want to gradually reduce the spatial resolution of our
hidden representations while aggregating meaningful
features

• Pooling helps in reducing the spatial resolution

• Like convolutional layer, pooling operators consist of a
fixed-shape window that is slid over all regions of the
input according to its stride

• However unlike convolutional layer, the pooling layer
contains no parameters (there is no kernel)

• Mostly, we take the maximum of the elements in the
pooling window − max pooling

1 2 3 4 4 5

6 0 7 8 9 0

4 1 7 2 9 4

9 4 9 1 4 2

6 8

2 × 3

Input

4 × 6

2 × 2
max pooling

Stride = 2
Padding = 0

max(3,4,7,8)

Pooling

78

• We want to gradually reduce the spatial resolution of our
hidden representations while aggregating meaningful
features

• Pooling helps in reducing the spatial resolution

• Like convolutional layer, pooling operators consist of a
fixed-shape window that is slid over all regions of the
input according to its stride

• However unlike convolutional layer, the pooling layer
contains no parameters (there is no kernel)

• Mostly, we take the maximum of the elements in the
pooling window − max pooling

1 2 3 4 4 5

6 0 7 8 9 0

4 1 7 2 9 4

9 4 9 1 4 2

6 8 9

2 × 3

Input

4 × 6

2 × 2
max pooling

Stride = 2
Padding = 0

max(4,5,9,0)

Pooling

79

• We want to gradually reduce the spatial resolution of our
hidden representations while aggregating meaningful
features

• Pooling helps in reducing the spatial resolution

• Like convolutional layer, pooling operators consist of a
fixed-shape window that is slid over all regions of the
input according to its stride

• However unlike convolutional layer, the pooling layer
contains no parameters (there is no kernel)

• Mostly, we take the maximum of the elements in the
pooling window − max pooling

1 2 3 4 4 5

6 0 7 8 9 0

4 1 7 2 9 4

9 4 9 1 4 2

6 8 9

9

2 × 3

Input

4 × 6

2 × 2
max pooling

Stride = 2
Padding = 0

max(4,1,9,4)

Pooling

80

• We want to gradually reduce the spatial resolution of our
hidden representations while aggregating meaningful
features

• Pooling helps in reducing the spatial resolution

• Like convolutional layer, pooling operators consist of a
fixed-shape window that is slid over all regions of the
input according to its stride

• However unlike convolutional layer, the pooling layer
contains no parameters (there is no kernel)

• Mostly, we take the maximum of the elements in the
pooling window − max pooling

1 2 3 4 4 5

6 0 7 8 9 0

4 1 7 2 9 4

9 4 9 1 4 2

6 8 9

9 9

2 × 3

Input

4 × 6

2 × 2
max pooling

Stride = 2
Padding = 0

max(7,2,9,1)

• We want to gradually reduce the spatial resolution of our
hidden representations while aggregating meaningful
features

• Pooling helps in reducing the spatial resolution

• Like convolutional layer, pooling operators consist of a
fixed-shape window that is slid over all regions of the
input according to its stride

• However unlike convolutional layer, the pooling layer
contains no parameters (there is no kernel)

• Mostly, we take the maximum of the elements in the
pooling window − max pooling

• Max pooling gets feature representation that is somewhat
invariant to translation (recall we wanted to find Waldo
irrespective of its location in image)

• There is also average pooling, taking average of the
elements in the window

Pooling

1 2 3 4 4 5

6 0 7 8 9 0

4 1 7 2 9 4

9 4 9 1 4 2

6 8 9

9 9 9

2 × 3

Input

4 × 6

2 × 2
max pooling

Stride = 2
Padding = 0

max(9,4,4,2)

82

• Now we have all the ingredients to assemble a CNN

• We will now see the first CNN − LeNet (1998) by Yann LeCun for
handwritten digit recognition

• We have a grayscale image of an handwritten digit of size 32 x 32 with depth = 1

• This is going to be our input to LeNet

LeNet for handwritten digit recognition

32

32

 nput
Convolu on layer 1

2

2

1

1

 ax pooling layer 1

Convolu on layer 2

1

1

 ax pooling layer 2

FC 1 (12) FC 2 ()
 utput (1)

LeNet for handwritten digit recognition

32

32

 nput
Convolu on layer 1

2

2

1

1

 ax pooling layer 1

Convolu on layer 2

1

1

 ax pooling layer 2

• We have 6 kernels

• Each kernel has 5x5 = 25 weights

• # parameters = 25x6 = 150

• Input size = 32x32 = 1024

• Output size = 28x28 = 784

• If this was a fully-connected network,
you needed 1024 x 784 weights!

• For convolution layer, we have just
150 parameters

• Great reduction in # of parameters

• A sigmoid activation was applied
(ReLU was not known then)

• Stride 𝑆 = 1
• Pad 𝑃 = 0
• Kernel → 5 × 5
• # kernels → 6

• Parameters →

• Stride 𝑆 = 1
• Pad 𝑃 = 0
• Kernel → 1 × 5 × 5
• # kernels → 6

• Parameters →

LeNet for handwritten digit recognition

32

32

 nput
Convolu on layer 1

2

2

1

1

 ax pooling layer 1

Convolu on layer 2

1

1

 ax pooling layer 2

• Stride 𝑆 = 2
• Pad 𝑃 = 0
• Kernel → 2 × 2

• Parameters →

• Max pooling is a per feature map
operation

• Here the kernel size is 2 x 2

• It downscales the size of feature maps

𝑓ℎ =
28 − 2 + 0

2
+ 1 = 14

𝑓𝑤 =
28 − 2 + 0

2
+ 1 = 14

• The depth of max pooling layer is the
same as the preceding convolution
layer; here depth is 6

• There are no parameters in max
pooling layers; they just take
maximum of elements in a window

• Stride 𝑆 = 1
• Pad 𝑃 = 0
• Kernel → 5 × 5
• # kernels → 6

• Parameters →

LeNet for handwritten digit recognition

32

32

 nput
Convolu on layer 1

2

2

1

1

 ax pooling layer 1

Convolu on layer 2

1

1

 ax pooling layer 2

• Stride 𝑆 = 2
• Pad 𝑃 = 0
• Kernel → 2 × 2

• Parameters →

• Stride 𝑆 = 1
• Pad 𝑃 = 0
• Kernel → 5 × 5 × 6
• # kernels → 16

• Parameters →

• Feature map size

𝑓ℎ =
14 − 5 + 0

1
+ 1 = 10

𝑓𝑤 =
14 − 5 + 0

1
+ 1 = 10

• Depth of kernels = 6

• Here kernel size is 5 x 5 x 6

• # parameters = 5 x 5 x 6 x 16
= 2400

LeNet for handwritten digit recognition

32

32

 nput
Convolu on layer 1

2

2

1

1

 ax pooling layer 1

Convolu on layer 2

1

1

 ax pooling layer 2

• Stride 𝑆 =2
• Pad 𝑃 = 0
• Kernel → 2 × 2

• Parameters → 0

• Stride 𝑆 = 1
• Pad 𝑃 = 0
• Kernel → 5 × 5
• # kernels → 6

• Parameters →

• Stride 𝑆 = 2
• Pad 𝑃 = 0
• Kernel → 2 × 2

• Parameters →

• Stride 𝑆 = 1
• Pad 𝑃 = 0
• Kernel → 5 × 5 × 6
• # kernels → 16

• Parameters →

𝑓ℎ =
10 − 2 + 0

2
+ 1 = 5

𝑓𝑤 =
10 − 2 + 0

2
+ 1 = 5

LeNet for handwritten digit recognition

32

32

 nput
Convolu on layer 1

2

2

1

1

 ax pooling layer 1

Convolu on layer 2

1

1

 ax pooling layer 2

FC 1 (12) FC 2 ()
 utput (1)

After max pooling layer 2, there are two fully connected hidden layers

• The features of the max pooling layer is flattened out into a vector of size 16x5x5 = 400 and fed to FC 1 layer as inputs

• FC 1 layer has 120 hidden units → (16x5x5) x 120 = 48000 weights + 120 biases = 48120 parameters

• FC 2 layer has 84 hidden units → 120 x 84 = 10080 weights + 84 biases = 10164 parameters

• Output layer has 10 classes → 84 x 10 = 840 weights + 10 biases = 850 parameters

• The entire network can be trained using back propagation

	Slide 1: APL 405: Machine Learning for Mechanics Lecture 15: Convolutional Neural Network
	Slide 2: Introduction
	Slide 3: Grayscale vs Colored images
	Slide 4: From fully-connected layers to Convolution layers
	Slide 5: From fully-connected layers to Convolution layers
	Slide 6: From fully-connected layers to Convolution layers
	Slide 7: From fully-connected layers to Convolution layers
	Slide 8: From fully-connected layers to Convolution layers
	Slide 9: From fully-connected layers to Convolution layers
	Slide 10: From fully-connected layers to Convolution layers
	Slide 11: From fully-connected layers to Convolution layers
	Slide 12: What is convolution?
	Slide 13: 1D Convolution
	Slide 14: 1D Convolution
	Slide 15: Convolution in 1D
	Slide 16: 1D Convolution
	Slide 17: 1D Convolution to 2D Convolution
	Slide 18: 1D Convolution to 2D Convolution
	Slide 19: 2D Convolution
	Slide 20: 2D Convolution
	Slide 21: 2D Convolution
	Slide 24: 2D Convolution
	Slide 25: 2D Convolution
	Slide 26: 2D Convolution
	Slide 27: 2D Convolution
	Slide 28: 2D Convolution
	Slide 29: 2D Convolution
	Slide 30: 2D Convolution
	Slide 31: 2D Convolution
	Slide 32: 2D Convolution
	Slide 33: 2D Convolution
	Slide 34: 2D Convolution
	Slide 35: 2D Convolution
	Slide 36: 2D Convolution
	Slide 37: 2D Convolution
	Slide 38: What would happen in case of colored images?
	Slide 39: What would happen in case of colored images?
	Slide 40
	Slide 41
	Slide 42
	Slide 43: What would happen in case of colored images?
	Slide 44: What would happen in case of colored images?
	Slide 45: Convolution followed by linear rectification
	Slide 46: What are the relations between input sizes, kernel sizes, and output sizes?
	Slide 47: Relation between input sizes, kernel sizes, and output sizes
	Slide 48: Zero padding
	Slide 49: Zero padding
	Slide 50: Zero padding
	Slide 51: Zero padding
	Slide 52: Zero padding
	Slide 53: Stride
	Slide 54: Stride
	Slide 55: Stride
	Slide 56: Stride
	Slide 57: Stride
	Slide 58: Stride
	Slide 59: Stride
	Slide 60: Stride
	Slide 61: Stride
	Slide 62: Depth of the output layer
	Slide 63: Example for determining sizes
	Slide 64: Example for determining sizes
	Slide 65
	Slide 66: Output features for image classification
	Slide 67: Full connected NN vs CNN
	Slide 68: Full connected NN vs CNN
	Slide 69: Full connected NN vs CNN
	Slide 70: Full connected NN vs CNN
	Slide 71: Full connected NN vs CNN
	Slide 72: Full connected NN vs CNN
	Slide 73: Full connected NN vs CNN
	Slide 74
	Slide 75: Convolutional neural networks
	Slide 76: Pooling
	Slide 77: Pooling
	Slide 78: Pooling
	Slide 79: Pooling
	Slide 80: Pooling
	Slide 81: Pooling
	Slide 82
	Slide 83: LeNet for handwritten digit recognition
	Slide 84: LeNet for handwritten digit recognition
	Slide 85: LeNet for handwritten digit recognition
	Slide 86: LeNet for handwritten digit recognition
	Slide 87: LeNet for handwritten digit recognition
	Slide 88: LeNet for handwritten digit recognition

