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Introduction

▪ We looked at fully connected neural networks which has each unit of previous layer is connected to all other units 
of the next layer

▪ Drawbacks of fully connected neural nets: 

▪ There are a lot of connections. Ex. 𝑝 units in previous layer, 𝑞 units in the next layer, then 𝑝𝑞 connections

▪ If we are trying to classify an image, we flatten the 2D image into vectors, which discards the spatial
structure/information of the image

▪ When dealing with images, the nearby pixels are typically related to each other, and we want to exploit this 
neighbourhood (or local) information to build more efficient neural networks
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Grayscale vs Colored images
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• Grayscale images have a single channel  
(depth = 1)

• Colored images have more than one channel 
(depth > 1)

• Ex. RGB images has 3 channels
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From fully-connected layers to Convolution layers

▪ Suppose we want to train a network (with 1000 FC hidden 
units) that takes a 200 × 200 colored (RGB) image as input

▪ What is the problem?

▪ Too many parameters! (Very complex, more chance of 
overfitting)

Input size = 200 × 200 × 3= 1,20,000
Parameters = 1,20,000 × 1000 = 12 × 107
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From fully-connected layers to Convolution layers

▪ Suppose we want to train a network (with 1000 hidden 
units) that takes a 200 × 200 RGB image as input

▪ What is the problem?

▪ Too many parameters! (Very complex, morechance of 
overfitting)

Input size = 200 × 200 × 3= 1,20,000
Parameters = 1,20,000 × 1000 = 12 × 107

▪ Too translation sensitive− Precise locations of objects in 
the image matter too much

− If you translate the objects in the image to different
locations, you may have to re-train a fully-connected
MLP, else it may fail to classify the outputs correctly

▪ We can do much better with CNN for images



From fully-connected layers to Convolution layers

▪ “Whereʼs Waldo?”
In the game, Waldo shows up 
somewhere in some unlikely 
location. The readerʼs goal is to 
locate him
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From fully-connected layers to Convolution layers

▪ “Whereʼs Waldo?”
In the game, Waldo shows up 
somewhere in some unlikely 
location. The readerʼs goal is to 
locate him

▪ We could sweep the image with a 
Waldo detector that could assign 
a score to each patch, indicating 
how likely the patch contains 
Waldo

▪ The patch with maximum score is 
where Waldo should be located

▪ As this local patch sweeps the 
entire image, it does not matter 
where Waldo is located



From fully-connected layers to Convolution layers

▪ “Whereʼs Waldo?”
In the game, Waldo shows up 
somewhere in some unlikely 
location. The readerʼs goal is to 
locate him

▪ We could sweep the image with a 
Waldo detector that could assign 
a score to each patch, indicating 
how likely the patch contains 
Waldo

▪ CNNs systematize this idea of 
translation invariance and 
localised feature detection, via 
convolutions and max pooling, 
with much less parameters 



From fully-connected layers to Convolution layers

• CNNs systematize this idea of translation invariance and localised feature detection, 
via convolutions and max pooling, with much less parameters

• CNNs uses multiple kernels (“Waldo detectors”) that detects different features

32 × 32 image Feature 
maps

Feature 
maps

Feature 
maps

Feature 
maps
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What is convolution?



1D Convolution 

▪ Convolution of two scalar-valued functions 𝑤(𝑥) and 𝑔(𝑥) is defined as:

▪ Whenever we have discrete objects (arrays), the integral turns into a sum:

▪ The array 𝒈 is the input

▪ The array 𝒘 is called the filter (or kernel)
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1D Convolution

▪ Convolution of two scalar-valued functions 𝑤(𝑥) and 𝑔(𝑥) is defined as:

▪ Whenever we have discrete objects (arrays), the integral turns into a sum:

▪ The array 𝒈 is the input

▪ The array 𝒘 is called the filter (or kernel)

▪ Flip-and-filter

▪ Slide the filter over the input and
compute windowed dot product
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Convolution in 1D

▪ Convolution of two scalar-valued functions 𝑤(𝑥) and 𝑔(𝑥) is defined as:

▪ Whenever we have discrete objects (arrays), the integral turns into a sum:

▪ The array 𝒈 is the input

▪ The array 𝒘 is called the filter (or kernel)

▪ Flip-and-filter

▪ Slide the filter over the input and
compute windowed dot product
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2 4 
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𝑠[3] 𝑠[4] 𝑠[5]
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𝑤[3] 𝑤[2] 𝑤[1] 𝑤[0]
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* =
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1D Convolution

▪ Convolution of two scalar-valued functions 𝑤(𝑥) and 𝑔(𝑥) is defined as:

▪ Whenever we have discrete objects (arrays), the integral turns into a sum:

▪ The array 𝒈 is the input

▪ The array 𝒘 is called the filter (or kernel)

▪ Flip-and-filter

▪ Slide the filter over the input and
compute windowed dot product

▪ Here the input (and the kernel) is 1D
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2 4 5

1 2 3 4 5 6

𝑠[3] 𝑠[4] 𝑠[5]

0.4 0.3 0.2 0.1

𝑤[3] 𝑤[2] 𝑤[1] 𝑤[0]

1 2 3 4 5 60.1 0.2 0.3 0.4

𝑤[0] 𝑤[1] 𝑤[2] 𝑤[3]

* =

𝑠 5 = 𝑤 3 𝑔 2 + 𝑤 2 𝑔 3 + 𝑤 1 𝑔 4 + 𝑤 0 𝑔 5

𝑔[0] 𝑔[1] 𝑔[2] 𝑔[3] 𝑔[4] 𝑔[5]

𝑔[0] 𝑔[1] 𝑔[2] 𝑔[3] 𝑔[4] 𝑔[5]

?

𝑠 𝑖 =

𝑎

𝑤 𝑖 − 𝑎 𝑔 𝑎

𝑠 𝑥 = 𝑤 ∗ 𝑔 (𝑥) = න𝑤 𝑥 − 𝑎 𝑔 𝑎 𝑑𝑎



1D Convolution to 2D Convolution

▪ Convolution is more like doing a flipped cross-correlation operation

▪ The filters (or kernels) will resemble the weights in CNN (as we will see soon) 

▪ Most machine learning libraries just implement a moving window cross-correlation (and ignore flipping) since it does not 
matter much whether you learn a flipped set of weights or unflipped set of weights

▪ How does convolution (think more like cross-correlation) look in 2D? 

▪ Let’s now consider 2D grayscale images (has depth of 1)  and 2D kernels
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1D Convolution to 2D Convolution

▪ Convolution is more like doing a flipped cross-correlation operation

▪ The filters (or kernels) will resemble the weights in CNN (as we will see soon) 

▪ Most machine learning libraries just implement a moving window cross-correlation (and ignore flipping) since it does not 
matter much whether you learn a flipped set of weights or unflipped set of weights

▪ How does convolution (think more like cross-correlation) look in 2D? 

▪ Let’s now consider 2D grayscale images (has depth of 1)  and 2D kernels
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2D Convolution

▪ Convolution is more like a moving window flipped cross-correlation operation

▪ The filters (or kernels) will resemble the weights in CNN (as we will see soon) 

▪ Most machine learning libraries just implement a moving window cross-correlation (and ignore flipping) since it does not 
matter much whether you learn a flipped set of weights or unflipped set of weights

▪ How does convolution (think cross-correlation from now on) look in 2D? 

▪ Let’s now consider 2D grayscale images (has depth of 1) and 2D kernels
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2D Convolution

▪ Convolution is more like a moving window flipped cross-correlation operation

▪ The filters (or kernels) will resemble the weights in CNN (as we will see soon) 

▪ Most machine learning libraries just implement a moving window cross-correlation (and ignore flipping) since it does not 
matter much whether you learn a flipped set of weights or unflipped set of weights

▪ How does convolution (think cross-correlation from now on) look in 2D? 

▪ Let’s now consider 2D grayscale images (has depth of 1) and 2D kernels
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2D Convolution

▪ Convolution is more like a moving window flipped cross-correlation operation

▪ The filters (or kernels) will resemble the weights in CNN (as we will see soon) 

▪ Most machine learning libraries just implement a moving window cross-correlation (and ignore flipping) since it does not 
matter much whether you learn a flipped set of weights or unflipped set of weights

▪ How does convolution (think cross-correlation from now on) look in 2D? 

▪ Let’s now consider 2D grayscale images (has depth of 1) and 2D kernels
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2D Convolution

▪ Despite the simplicity of the operation, convolution can do some pretty interesting things

▪ Let’s look at some examples of convolutions with grayscale images
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*

1 1 1

1 1 1

1 1 1

=

Blur kernel: Takes an average of all the neigbouring pixels



2D Convolution

▪ Despite the simplicity of the operation, convolution can do some pretty interesting things

▪ Let’s look at some examples of convolutions with grayscale images
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*

0 -1 0

-1 5 -1

0 -1 0

=

Sharpen kernel: Emphasizes differences in adjacent pixel values



2D Convolution

▪ Despite the simplicity of the operation, convolution can do some pretty interesting things

▪ Let’s look at some examples of convolutions with grayscale images
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*

-1 0 1

-2 0 2

-1 0 1

=

Vertical edge detector: Finds edges from darker to brighter intensities



2D Convolution
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• We just slide the kernel over the input
image

• Each time we slide the kernel we get
one value in the output
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2D Convolution
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2D Convolution
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2D Convolution
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2D Convolution
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2D Convolution
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2D Convolution
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2D Convolution
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2D Convolution
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2D Convolution
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• We just slide the kernel over the input
image

• Each time we slide the kernel we get
one value in the output

• The resulting output is called a feature map

-1 0 1

-2 0 2

-1 0 1

Feature map



2D Convolution
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• We just slide the kernel over the input
image

• Each time we slide the kernel we get
one value in the output

• The resulting output is called a feature map

• We can use multiple filters to get multiple 
feature maps

• How convolutions will happen for colored 
images?

-1 0 1

-2 0 2

-1 0 1

Multiple Features 

0 -1 0

-1 5 -1

0 -1 0



What would happen in case of colored images?
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• Grayscale images have a single channel  
(depth = 1)

• Colored images have more than one channel 
(depth > 1)

• Ex. RGB images has 3 channels

• How does convolution happen in 3D case?

• Well the kernel or filter will be 3D too (i.e. will 
have same number of channels as the input)

Grayscale Image

Color Image
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What would happen in case of colored images?
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• Grayscale images have a single channel 
(depth = 1)

• Colored images have more than one channel 
(depth > 1)

• Ex. RGB images has 3 channels

• How does convolution happen in 3D case?

• Well the kernel or filter will be 3D too (i.e. will 
have same number of channels as the input)

• Let’s see how the 3D convolutions happen

Input

A single 3D kernel
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RGB Input (3 channels) A single 3D kernel

0 1 2

3 4 5

6 7 8

-2 -1 0 1

2 3 4 5

6 7 8 9

0 -4 0

3 0 5

2 -1 8

-1 1 2

3 2 0

6 0 1

-3 -2 -1 0

1 2 3 4

5 6 7 8

-6 -2 3 0

1 2 3 4

5 4 2 8

*

-2 -1 0 1

2 3 4 5

6 7 8 9

0 1 2

3 4 5

6 7 8
* +

-3 -2 -1 0

1 2 3 4

5 6 7 8

0 -4 0

3 0 5

2 -1 8
*

-6 -2 3 0

1 2 3 4

5 4 2 8

*

+

-1 1 2

3 2 0

6 0 1
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-2 -1 0 1

2 3 4 5

6 7 8 9

0 1 2

3 4 5

6 7 8

*

+

-3 -2 -1 0

1 2 3 4

5 6 7 8

0 -4 0

3 0 5

2 -1 8

-6 -2 3 0

1 2 3 4

5 4 2 8

*

+

-1 1 2

3 2 0

6 0 1

*

(-2)(0) + (-1)(1) + (0)(2)
+ (2)(3)  + (3)(4)  + (4)(5)
+ (6)(6)  + (7)(7)  + (8)(8) 

323

+ +
(-3)(0) + (-2)(-4) + (-1)(0)

+ (1)(3)  + (2)(0)    + (3)(5)
+ (5)(2)  + (6)(-1)   + (7)(8) 

(-6)(-1) + (-2)(1) + (3)(2)
+ (1)(3)   + (2)(2)   + (3)(0)
+ (5)(6)   + (4)(0)   + (2)(1) 

188 86 49

=
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-2 -1 0 1

2 3 4 5

6 7 8 9

0 1 2

3 4 5

6 7 8

*

+

-3 -2 -1 0

1 2 3 4

5 6 7 8

0 -4 0

3 0 5

2 -1 8

-6 -2 3 0

1 2 3 4

5 4 2 8

*

+

-1 1 2

3 2 0

6 0 1

*

(-1)(0) + (0)(1)  + (1)(2)
+ (3)(3)  + (4)(4)  + (5)(5)
+ (7)(6)  + (8)(7)  + (9)(8) 

323 370

+ +
(-2)(0) + (-1)(-4) + (0)(0)

+ (2)(3)  + (3)(0)    + (4)(5)
+ (6)(2)  + (7)(-1)   + (8)(8) 

(-2)(-1) + (3)(1)  + (0)(2)
+ (2)(3)   + (3)(2)   + (4)(0)
+ (4)(6)   + (2)(0)   + (8)(1) 

222 99 49

=



What would happen in case of colored images?
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• Grayscale images have a single channel 
(depth = 1)

• Colored images have more than one channel 
(depth > 1)

• Ex. RGB images has 3 channels

• How does convolution happen in 3D case?

• Well the kernel or filter will be 3D too (i.e. will 
have same number of channels as the input)

• The kernel moves along the width and height 
(and not along the depth)

• Therefore, the feature output is 2D!

3D Input

2D Output feature

A single 3D kernel



What would happen in case of colored images?
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• Grayscale images have a single channel  
(depth = 1)

• Colored images have more than one channel 
(depth > 1)

• Ex. RGB images has 3 channels

• How does convolution happen in 3D case?

• Well the kernel or filter will be 3D too (i.e. will 
have same number of channels as the input)

• The kernel moves along the width and height 
(and not along the depth)

• Therefore, the feature output is 2D!

• Once again, if we apply multiple 3D filters, we 
will get multiple 2D output features

3D Input

𝐾 2D Output features

Kernel 1 Kernel 𝐾

⋯

⋯



Convolution followed by linear rectification
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It is common to apply a ReLU nonlinear activation on the output feature following convolution: 𝑦 = max(𝑧, 0)

Why might we do this?

• Convolution is a linear operation. Passing 
the linear output through nonlinear 
activation leads to more powerful features

• While pooling the results, two edges in 
opposite directions shouldn’t cancel

• It has been reported that nonlinear 
activations (like ReLU or ELU) when used 
after convolutional layers given better 
performance
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What are the relations between input sizes, kernel sizes, and output sizes?



Relation between input sizes, kernel sizes, and output sizes

▪ So far we have not said anything explicit about the dimensions of 
the

▪ Inputs

▪ Kernels

▪ Outputs

▪ the relations between them

▪ We will see how they are related but before that we will discuss 
zero-padding and stride
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Input

Feature

Kernel

*

4 × 6 3 × 3

2 × 4



Zero padding

▪ Note that we can’t place the kernel centred at the corners or at 
boundaries of our image

▪ Thus any interesting information on the boundaries of the 
original image is lost
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Input

Kernel



Zero padding

▪ Note that we can’t place the kernel centred at the corners or at 
boundaries of our image

▪ Thus any interesting information on the boundaries of the 
original image is lost

▪ This loss of information results in an output feature size 
smaller than the input image

▪ If input size is 𝑛ℎ × 𝑛𝑤,  kernel size is 𝑘ℎ × 𝑘𝑤, then output 

feature size 𝑓ℎ × 𝑓𝑤 is related as follows:

𝑓ℎ = 𝑛ℎ − 𝑘ℎ + 1

𝑓𝑤 = 𝑛𝑤 − 𝑘𝑤 + 1

49

Input
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4 × 6 3 × 3
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Zero padding

▪ Note that we can’t place the kernel centred at the corners or at 
boundaries of our image

▪ Thus any interesting information on the boundaries of the 
original image is lost

▪ This loss of information results in an output feature size 
smaller than the input image

▪ If input size is 𝑛ℎ × 𝑛𝑤,  kernel size is 𝑘ℎ × 𝑘𝑤, then output 

feature size 𝑓ℎ × 𝑓𝑤 is related as follows:

𝑓ℎ = 𝑛ℎ − 𝑘ℎ + 1

𝑓𝑤 = 𝑛𝑤 − 𝑘𝑤 + 1

▪ As the size of the kernel increases, this output size reduces 
even more
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Input

Feature

Kernel

*

4 × 6 4 × 4

1 × 3



Zero padding

▪ One straightforward solution to this problem is to add zero pixels 
around the boundary of our input image, thus increasing the 
effective size of the image

▪ This means we pad zeros of width 𝑝𝑤 on left and right, and pad 
zeros of height 𝑝ℎ on top and bottom 

▪ The output feature shape will be 𝑓ℎ × 𝑓𝑤:

𝑓ℎ = 𝑛ℎ − 𝑘ℎ + 2𝑝𝑤 + 1

𝑓𝑤 = 𝑛𝑤 − 𝑘𝑤 + 2𝑝ℎ + 1
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0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0

Input

4 × 6

Zero-padded Input

6 × 8

Kernel

3 × 3



Zero padding

▪ One straightforward solution to this problem is to add zero pixels 
around the boundary of our input image, thus increasing the 
effective size of the image

▪ This means we pad zeros of width 𝑝𝑤 on left and right, and pad 
zeros of height 𝑝ℎ on top and bottom 

▪ The output feature shape will be 𝑓ℎ × 𝑓𝑤:

𝑓ℎ = 𝑛ℎ − 𝑘ℎ + 2𝑝𝑤 + 1

𝑓𝑤 = 𝑛𝑤 − 𝑘𝑤 + 2𝑝ℎ + 1

▪ Usual values: 𝑝ℎ =
𝑘ℎ−1

2
and 𝑝𝑤 =

𝑘𝑤−1

2

▪ It becomes easy to work with odd-sized kernels like 3x3, 5x5, 7x7 
as zero-padding will give an integer number, else ceil the value
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0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0

4 × 6

Zero-padded Input

6 × 8

Kernel

3 × 3

*

Output feature



Stride

▪ When computing the cross-correlation, we typically move our 
kernel by one interval along right and/or downwards 

▪ Stride defines the intervals at which the kernel is applied

▪ By default, we slide one element at a time

▪ However, sometimes, either for computational efficiency or 
because we wish to downsample (reduce size of output), we 
move our window more than one element at a time, skipping 
the intermediate locations

▪ For such cases, the stride would be greater than 1
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Stride

▪ When the stride along the height is 𝑠ℎ and the stride along the width is 𝑠𝑤, the output shape 𝑓ℎ × 𝑓𝑤 is

𝑛ℎ − 𝑘ℎ + 2𝑝ℎ
𝑠ℎ

+ 1 ×
𝑛𝑤 − 𝑘𝑤 + 2𝑝𝑤

𝑠𝑤
+ 1
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Stride

▪ When the stride along the height is 𝑠ℎ and the stride along the width is 𝑠𝑤, the output shape 𝑓ℎ × 𝑓𝑤 is

𝑛ℎ − 𝑘ℎ + 2𝑝ℎ
𝑠ℎ

+ 1 ×
𝑛𝑤 − 𝑘𝑤 + 2𝑝𝑤

𝑠𝑤
+ 1

▪ Typically, equal strides are taken, 𝑠ℎ = 𝑠𝑤 = 𝑆.   Let’s consider an example with 𝑆 = 2
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0 0 0 0 0 0 0 0

0 1 2 3 4 4 5 0

0 6 0 7 8 9 0 0

0 4 1 7 2 9 4 0

0 9 4 9 1 4 2 0

0 0 0 0 0 0 0 0

4 × 6

0 1 2

3 4 5

6 7 8

Kernel

3 × 3

*

Input

=

2 × 3

Output feature



Stride

▪ When the stride along the height is 𝑠ℎ and the stride along the width is 𝑠𝑤, the output shape 𝑓ℎ × 𝑓𝑤 is

𝑛ℎ − 𝑘ℎ + 2𝑝ℎ
𝑠ℎ

+ 1 ×
𝑛𝑤 − 𝑘𝑤 + 2𝑝𝑤

𝑠𝑤
+ 1

▪ Typically, equal strides are taken, 𝑠ℎ = 𝑠𝑤 = 𝑆.   For stride 𝑆 = 2, the following output is obtained
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0 0 0 0 0 0 0 0

0 1 2 3 4 4 5 0

0 6 0 7 8 9 0 0

0 4 1 7 2 9 4 0

0 9 4 9 1 4 2 0

0 0 0 0 0 0 0 0

0 1 2

3 4 5

6 7 8

Kernel

3 × 3

*

Input

=
56

2 × 3

Output feature

4 × 6



Stride

▪ When the stride along the height is 𝑠ℎ and the stride along the width is 𝑠𝑤, the output shape 𝑓ℎ × 𝑓𝑤 is

𝑛ℎ − 𝑘ℎ + 2𝑝ℎ
𝑠ℎ

+ 1 ×
𝑛𝑤 − 𝑘𝑤 + 2𝑝𝑤

𝑠𝑤
+ 1

▪ Typically, equal strides are taken, 𝑠ℎ = 𝑠𝑤 = 𝑆.   For stride 𝑆 = 2, the following output is obtained
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0 0 0 0 0 0 0 0

0 1 2 3 4 4 5 0

0 6 0 7 8 9 0 0

0 4 1 7 2 9 4 0

0 9 4 9 1 4 2 0

0 0 0 0 0 0 0 0

0 1 2

3 4 5

6 7 8

Kernel

3 × 3

*

Input

=
56 151

2 × 3

Output feature

4 × 6



Stride

▪ When the stride along the height is 𝑠ℎ and the stride along the width is 𝑠𝑤, the output shape 𝑓ℎ × 𝑓𝑤 is

𝑛ℎ − 𝑘ℎ + 2𝑝ℎ
𝑠ℎ

+ 1 ×
𝑛𝑤 − 𝑘𝑤 + 2𝑝𝑤

𝑠𝑤
+ 1

▪ Typically, equal strides are taken, 𝑠ℎ = 𝑠𝑤 = 𝑆.   For stride 𝑆 = 2, the following output is obtained
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0 1 2 3 4 4 5 0

0 6 0 7 8 9 0 0

0 4 1 7 2 9 4 0

0 9 4 9 1 4 2 0

0 0 0 0 0 0 0 0

0 1 2

3 4 5

6 7 8

Kernel

3 × 3

*

Input

=
56 151 164

2 × 3

Output feature

4 × 6



Stride

▪ When the stride along the height is 𝑠ℎ and the stride along the width is 𝑠𝑤, the output shape 𝑓ℎ × 𝑓𝑤 is

𝑛ℎ − 𝑘ℎ + 2𝑝ℎ
𝑠ℎ

+ 1 ×
𝑛𝑤 − 𝑘𝑤 + 2𝑝𝑤

𝑠𝑤
+ 1

▪ Typically, equal strides are taken, 𝑠ℎ = 𝑠𝑤 = 𝑆.   For stride 𝑆 = 2, the following output is obtained
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0 0 0 0 0 0 0 0
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*
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=
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Stride

▪ When the stride along the height is 𝑠ℎ and the stride along the width is 𝑠𝑤, the output shape 𝑓ℎ × 𝑓𝑤 is

𝑛ℎ − 𝑘ℎ + 2𝑝ℎ
𝑠ℎ

+ 1 ×
𝑛𝑤 − 𝑘𝑤 + 2𝑝𝑤

𝑠𝑤
+ 1

▪ Typically, equal strides are taken, 𝑠ℎ = 𝑠𝑤 = 𝑆.   For stride 𝑆 = 2, the following output is obtained
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*
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=
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122 159

2 × 3

Output feature

4 × 6



Stride

▪ When the stride along the height is 𝑠ℎ and the stride along the width is 𝑠𝑤, the output shape 𝑓ℎ × 𝑓𝑤 is

𝑛ℎ − 𝑘ℎ + 2𝑝ℎ
𝑠ℎ

+ 1 ×
𝑛𝑤 − 𝑘𝑤 + 2𝑝𝑤

𝑠𝑤
+ 1

▪ Typically, equal strides are taken, 𝑠ℎ = 𝑠𝑤 = 𝑆.   For stride 𝑆 = 2, the following output is obtained
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0 1 2 3 4 4 5 0

0 6 0 7 8 9 0 0

0 4 1 7 2 9 4 0

0 9 4 9 1 4 2 0
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3 4 5

6 7 8

Kernel
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*
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=
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122 159 121

2 × 3

Output feature
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Depth of the output layer

▪ Finally, let’s come to the depth 𝑓𝑑 of the output feature layer

▪ If we have multi-channel inputs, depth will be 𝑛𝑑 > 1

▪ Each 3D kernel will give us one 2D output feature

▪ 𝐾 kernels will give us 𝐾 such 2D output features

▪ We can think of the resulting output feature as 𝑓ℎ × 𝑓𝑤 × 𝑓𝑑
volume

▪ Thus, 𝑓𝑑 = 𝐾
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𝑛𝑑

𝑛ℎ

𝑛𝑤
𝑓𝑑

𝑓𝑤

𝑓ℎ

= 𝐾



Example for determining sizes

63

1

32

32

𝑓𝑑

𝑓𝑤

𝑓ℎ
5

5

1

∗

• 6 kernels 
• Stride, 𝑆 = 1
• Padding, 𝑃 = 0

▪ Output layer dimensions

𝑓ℎ =
𝑛ℎ − 𝑘ℎ + 2𝑃

𝑆
+ 1

𝑓𝑤 =
𝑛𝑤 − 𝑘𝑤 + 2𝑃

𝑆
+ 1

𝑓𝑑 = 𝐾 (number of kernels)



Example for determining sizes
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3

227

227

𝑓𝑑

𝑓𝑤

𝑓ℎ
11

11

3

∗

• 96 kernels 
• Stride, 𝑆 = 4
• Padding, 𝑃 = 0

▪ Output layer dimensions

𝑓ℎ =
𝑛ℎ − 𝑘ℎ + 2𝑃

𝑆
+ 1

𝑓𝑤 =
𝑛𝑤 − 𝑘𝑤 + 2𝑃

𝑆
+ 1

𝑓𝑑 = 𝐾 (number of kernels)
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• What is the connection between this operation (convolution) and 
neural networks?

• We will try to understand this by considering the task of image 
classification



Output features for image classification
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Input

Face, Hands, Legs

Kernel

Feature map Classifier output

Edge detector

• Instead of using handcrafted kernels such as edge detectors can we learn (or optimize) meaningful kernels/filters 
in addition to learning the weights of the classifier?

• Even better, if we can learn multiple meaningful kernels/filters in addition to the weights of the classifier

• In CNN, we treat these kernels as parameters and learn them in addition to the weights of the classifier (using 
back propagation) in CNN

• But how is CNN different than fully-connected feedforward neural networks? 

Optimize the 
weights of 
classifier
based on 

training data



Full connected NN  vs CNN
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• This is what a regular fully-connected feed-forward
neural network looks like 

• It is dense, there are many connections

• For example, all the 16 input neurons are contributing to 

the computation of ℎ11 = ℎ1
1

• Contrast this to what happens in the case of convolution 



Full connected NN  vs CNN
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• Only a few local neurons participate in the computation 

of ℎ11 = ℎ1
1

• For example, only pixels 1, 2, 5, 6 contribute to ℎ1
1



Full connected NN  vs CNN
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• Only a few local neurons participate in the computation 

of ℎ11 = ℎ1
1

• For example, only pixels 1, 2, 5, 6 contribute to ℎ1
1

• For example, only pixels 3, 4, 7, 8 contribute to 

ℎ12 = ℎ2
1



Full connected NN  vs CNN
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• Only a few local neurons participate in the computation 

of ℎ11 = ℎ1
1

• For example, only pixels 1, 2, 5, 6 contribute to ℎ1
1

• The connections are much sparser

• This sparse connectivity reduces the number of 
parameters in the model

• But is sparse connectivity good? Aren’t we losing 
information (by losing interactions between some input
pixels) ?



Full connected NN  vs CNN
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• But is sparse connectivity good? Aren’t we losing 
information (by losing interactions between some input
pixels) ?

• It turns out we are not losing information/interactions 

• The two highlighted neurons (𝑥1 and 𝑥5) do not interact 
in hidden layer 1

• But they indirectly contribute to the computation of 𝑔3
and hence interact indirectly 



Full connected NN  vs CNN
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• Another characteristic of CNNs is weight sharing

• Imagine if we use an edge detection kernel

• Then the same kernel is passed over the all locations of 

the image to produce ℎ1
1

, ℎ2
1

, ℎ3
1

, ℎ4
1

,  ⋯

• Since the kernel weights remain same as we sweep 
across all locations of the image, it is as if we share the 
weights across all locations of the image



Full connected NN  vs CNN
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• Another characteristic of CNNs is weight sharing

• Imagine if we use an edge detection kernel

• Then the same kernel is passed over the all locations of 

the image to produce ℎ1
1

, ℎ2
1

, ℎ3
1

, ℎ4
1

,  ⋯

• Since the kernel weights remain same as we sweep 
across all locations of the image, it is as if we share the 
weights across all locations of the image

• Note, we can have many such kernels and each kernel 
will be shared by all locations in the image 

Kernel 1 Kernel 2 Kernel 𝐾

⋯
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• So far we have talked a lot on convolution layers

• Saw how kernels are convolved with inputs to produce features 

• Understood that kernels are to be learned (or optimized), not manually set

• Let’s look at CNN for a moment



Convolutional neural networks
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• So a CNN has alternate convolution and pooling layers

• What does a pooling layer do?

32 × 32 image Feature 
maps

Feature 
maps

Feature 
maps

Feature 
maps



Pooling
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• We want to gradually reduce the spatial resolution of our 
hidden representations while aggregating meaningful 
features

• Pooling helps in reducing the spatial resolution

• Like convolutional layer, pooling operators consist of a 
fixed-shape window that is slid over all regions of the 
input according to its stride

• However unlike convolutional layer, the pooling layer
contains no parameters (there is no kernel)

• Mostly, we take the maximum of the elements in the 
pooling window − max pooling

1 2 3 4 4 5

6 0 7 8 9 0

4 1 7 2 9 4

9 4 9 1 4 2

6

2 × 3

Input

4 × 6

2 × 2
max 

pooling

Stride = 2
Padding = 0

max(1,2,6,0)



Pooling
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• We want to gradually reduce the spatial resolution of our 
hidden representations while aggregating meaningful 
features

• Pooling helps in reducing the spatial resolution

• Like convolutional layer, pooling operators consist of a 
fixed-shape window that is slid over all regions of the 
input according to its stride

• However unlike convolutional layer, the pooling layer
contains no parameters (there is no kernel)

• Mostly, we take the maximum of the elements in the 
pooling window − max pooling

1 2 3 4 4 5

6 0 7 8 9 0

4 1 7 2 9 4

9 4 9 1 4 2

6 8

2 × 3

Input

4 × 6

2 × 2
max pooling

Stride = 2
Padding = 0

max(3,4,7,8)



Pooling
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• We want to gradually reduce the spatial resolution of our 
hidden representations while aggregating meaningful 
features

• Pooling helps in reducing the spatial resolution

• Like convolutional layer, pooling operators consist of a 
fixed-shape window that is slid over all regions of the 
input according to its stride

• However unlike convolutional layer, the pooling layer
contains no parameters (there is no kernel)

• Mostly, we take the maximum of the elements in the 
pooling window − max pooling

1 2 3 4 4 5

6 0 7 8 9 0

4 1 7 2 9 4

9 4 9 1 4 2

6 8 9

2 × 3

Input

4 × 6

2 × 2
max pooling

Stride = 2
Padding = 0

max(4,5,9,0)



Pooling
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• We want to gradually reduce the spatial resolution of our 
hidden representations while aggregating meaningful 
features

• Pooling helps in reducing the spatial resolution

• Like convolutional layer, pooling operators consist of a 
fixed-shape window that is slid over all regions of the 
input according to its stride

• However unlike convolutional layer, the pooling layer
contains no parameters (there is no kernel)

• Mostly, we take the maximum of the elements in the 
pooling window − max pooling

1 2 3 4 4 5

6 0 7 8 9 0

4 1 7 2 9 4

9 4 9 1 4 2

6 8 9

9

2 × 3

Input

4 × 6

2 × 2
max pooling

Stride = 2
Padding = 0

max(4,1,9,4)



Pooling
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• We want to gradually reduce the spatial resolution of our 
hidden representations while aggregating meaningful 
features

• Pooling helps in reducing the spatial resolution

• Like convolutional layer, pooling operators consist of a 
fixed-shape window that is slid over all regions of the 
input according to its stride

• However unlike convolutional layer, the pooling layer
contains no parameters (there is no kernel)

• Mostly, we take the maximum of the elements in the 
pooling window − max pooling

1 2 3 4 4 5

6 0 7 8 9 0

4 1 7 2 9 4

9 4 9 1 4 2

6 8 9

9 9

2 × 3

Input

4 × 6

2 × 2
max pooling

Stride = 2
Padding = 0

max(7,2,9,1)



• We want to gradually reduce the spatial resolution of our 
hidden representations while aggregating meaningful 
features

• Pooling helps in reducing the spatial resolution

• Like convolutional layer, pooling operators consist of a 
fixed-shape window that is slid over all regions of the 
input according to its stride

• However unlike convolutional layer, the pooling layer
contains no parameters (there is no kernel)

• Mostly, we take the maximum of the elements in the 
pooling window − max pooling

• Max pooling gets feature representation that is somewhat 
invariant to translation (recall we wanted to find Waldo 
irrespective of its location in image)

• There is also average pooling, taking average of the 
elements in the window

Pooling

1 2 3 4 4 5

6 0 7 8 9 0

4 1 7 2 9 4

9 4 9 1 4 2

6 8 9

9 9 9

2 × 3

Input

4 × 6

2 × 2
max pooling

Stride = 2
Padding = 0

max(9,4,4,2)
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• Now we have all the ingredients to assemble a CNN

• We will now see the first CNN − LeNet (1998) by Yann LeCun for 
handwritten digit recognition



• We have a grayscale image of an handwritten digit of size 32 x 32 with depth = 1

• This is going to be our input to LeNet

LeNet for handwritten digit recognition

32

32

 nput
Convolu on layer 1

2 

2 

1 

1 

 ax pooling layer 1

Convolu on layer 2

1 

1 

 ax pooling layer 2

 

 

FC 1 (12 ) FC 2 (  )
 utput (1 )



LeNet for handwritten digit recognition

32

32

 nput
Convolu on layer 1

2 

2 

1 

1 

 ax pooling layer 1

Convolu on layer 2

1 

1 

 ax pooling layer 2

 

 

• We have 6 kernels

• Each kernel has 5x5 = 25 weights

• # parameters = 25x6 = 150

• Input size = 32x32 = 1024

• Output size = 28x28 = 784

• If this was a fully-connected network, 
you needed 1024 x 784 weights!

• For convolution layer, we have just 
150 parameters

• Great reduction in # of parameters

• A sigmoid activation was applied 
(ReLU was not known then)

• Stride 𝑆 = 1
• Pad 𝑃 = 0
• Kernel → 5 × 5
• # kernels → 6

• Parameters →



• Stride 𝑆 = 1
• Pad 𝑃 = 0
• Kernel → 1 × 5 × 5
• # kernels → 6

• Parameters →

LeNet for handwritten digit recognition

32

32

 nput
Convolu on layer 1

2 

2 

1 

1 

 ax pooling layer 1

Convolu on layer 2

1 

1 

 ax pooling layer 2

 

 

• Stride 𝑆 = 2
• Pad 𝑃 = 0
• Kernel → 2 × 2

• Parameters →

• Max pooling is a per feature map 
operation

• Here the kernel size is 2 x 2

• It downscales the size of feature maps

𝑓ℎ =
28 − 2 + 0

2
+ 1 = 14

𝑓𝑤 =
28 − 2 + 0

2
+ 1 = 14

• The depth of max pooling layer is the 
same as the preceding convolution 
layer; here depth is 6 

• There are no parameters in max 
pooling layers; they just take 
maximum of elements in a window



• Stride 𝑆 = 1
• Pad 𝑃 = 0
• Kernel → 5 × 5
• # kernels → 6

• Parameters →

LeNet for handwritten digit recognition

32

32

 nput
Convolu on layer 1

2 

2 

1 

1 

 ax pooling layer 1

Convolu on layer 2

1 

1 

 ax pooling layer 2

 

 

• Stride 𝑆 = 2
• Pad 𝑃 = 0
• Kernel → 2 × 2

• Parameters →

• Stride 𝑆 = 1
• Pad 𝑃 = 0
• Kernel → 5 × 5 × 6
• # kernels → 16

• Parameters →

• Feature map size

𝑓ℎ =
14 − 5 + 0

1
+ 1 = 10

𝑓𝑤 =
14 − 5 + 0

1
+ 1 = 10

• Depth of kernels = 6

• Here kernel size is 5 x 5 x 6

• # parameters = 5 x 5 x 6 x 16
= 2400



LeNet for handwritten digit recognition

32

32

 nput
Convolu on layer 1

2 

2 

1 

1 

 ax pooling layer 1

Convolu on layer 2

1 

1 

 ax pooling layer 2

 

 

• Stride 𝑆 =2
• Pad 𝑃 = 0
• Kernel → 2 × 2

• Parameters → 0

• Stride 𝑆 = 1
• Pad 𝑃 = 0
• Kernel → 5 × 5
• # kernels → 6

• Parameters →

• Stride 𝑆 = 2
• Pad 𝑃 = 0
• Kernel → 2 × 2

• Parameters →

• Stride 𝑆 = 1
• Pad 𝑃 = 0
• Kernel → 5 × 5 × 6
• # kernels → 16

• Parameters →

𝑓ℎ =
10 − 2 + 0

2
+ 1 = 5

𝑓𝑤 =
10 − 2 + 0

2
+ 1 = 5



LeNet for handwritten digit recognition

32

32

 nput
Convolu on layer 1

2 

2 

1 

1 

 ax pooling layer 1

Convolu on layer 2

1 

1 

 ax pooling layer 2

 

 

FC 1 (12 ) FC 2 (  )
 utput (1 )

After max pooling layer 2, there are two fully connected hidden layers

• The features of the max pooling layer is flattened out into a vector of size 16x5x5 = 400 and fed to FC 1 layer as inputs

• FC 1 layer has 120 hidden units → (16x5x5) x 120 = 48000 weights + 120 biases = 48120 parameters 

• FC 2 layer has 84 hidden units → 120 x 84 = 10080 weights + 84 biases = 10164 parameters 

• Output layer has 10 classes → 84 x 10 = 840 weights + 10 biases = 850 parameters

• The entire network can be trained using back propagation
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