APL 405: Machine Learning for Mechanics

Lecture 12: Parameter Optimization

by

Rajdip Nayek
Assistant Professor,

Applied Mechanics Department,
lIT Delhi

Instructor email: rajdipn@am.iitd.ac.in

* We looked at different types of loss functions for regression and classification

* Learning the parameters of a chosen parametric model often requires minimizing an appropriate loss funciton
* An ML engineer therefore needs to be familiar with some strategies to solve optimization problems

* In this lecture, we will introduce some ideas behind some of the optimization methods used in ML

Optimization in Machine Learning (ML)

" Optimization — Finding the minimum or maximum of an objective function

" A maximization problem can be formulated as a minimization problem

0 = argmaxJ(0) = argmin —J(0)
0 0

So we will limit ourselves to minimization problems only

" Optimization in ML is primarily used in two ways:
" Training a model by minimizing the cost function w.r.t. the model parameters
" Objective function : J(0)
® Optimization variable: 0
" Tuning hyperparameters, such as the regularization parameter 4
" Objective function : E}g1q0—out

" Optimization variable: Hyperparameters (e.g. 1)

Convex functions

" Animportant class of objective functions are convex functions

" Optimization is much easier for convex objective functions, and it is a good idea to consider whether a non-
convex optimization can be reformulated into a convex problem (but it is not always possible)

® Convex functions have unique minimum and no other local minima

sy

AR S A O

AR TR S
A

\\Q\\Qm\““\t\\\\‘.\\ X!

\§\\\\\\

\\\ N

Objective function
Objective function

" Examples of convex functions are cost functions for logistic regression and linear regression

" However, most problems in ML do not lead to convex functions

Gradient of a cost function

" Training examples: {(x(, t(l)), (x®), t(z)), e, (2, t(N))}

= Let’s say the chosen model be: y = fg(x)
" Cost function — Average over individual training losses

N
Jj(6) = %z L(y®, fo(x®))
=1

" Gradient of loss function w.r.t. parameter 0

N
Vo/(0) = Vg %Z L (y(i),fe(x(i)))
i=1

N
V (¢9)=l VLW
o/ N 0
=1

Note: 8 would represent
hyperparameters in the case
of hyperparameter
optimization

Gradient Descent

" Gradient of loss function w.r.t. parameter 0 1 N
Vo (0) =) VL ®
i=1

® Vp/(0) has the same dimension as 6

" Vo/(0) describes the direction in which J(@) increases. Therefore,—VgJ (@) describes the direction in

which (@) decreases

" Taking a (small) step in the direction of the negative gradient will reduce the value of cost function

](0 — yVB](H)) < J(@) forsomey >0

" This suggests that if we have 8(®) and want to select 8¢+ such that J(8¢+D) < 1(8®) , we should

Update ¢+D = 9O — yv,7(91)
with somey > 0

y is called the learning rate

GD is a local optimizer, there is no guarantee that it will find the global minimum 6

Batch gradient descent (Batch GD)

N
Y (a)=l VoL
o/ N)
i=1

= Specify a learning rate, compute the total gradient Vy/(0) by averaging over all individual loss function gradients

Update 8D = 9O — yv,7(9®)
with somey > 0

for every training example, and then update the parameters 6

" The algorithm goes over the entire data once before updating the parameters

® This is known as batch gradient descent (BGD), since we treat the entire training set as a batch

* Pros: There is no approximation in gradient calculation. Each update
step guarantees that the loss will decrease, if y is small enough

* Cons: However, Batch GD can be very time-consuming for a large Gradien
datasets (very large N), due the summation over N datapoints

drednen~

Batch gradient descent (Batch GD)

Update 8(+D = 910 — yv,1(8®)
with somey > 0

N
Y («sv)=l Vol®
o/ N)
=1

® Batch gradient descent treat the entire training set as a single batch

" Updates the parameter vector after each full pass (epoch) over the entire dataset

— — 1 epoch
theta = -1 # initialize parameter vector
eta = 8.001 # learning rate
epochs = 186 # number of passes over entire dataset
Ntr = looee # number of training points
for 1 in range(epochs):
dtheta = 8 # initialize increment to zero
for x,t in zip(X,T):)
dtheta += grad_theta(theta, x, t) G""‘d‘e:‘

drednen~
theta = theta - eta * dtheta / Ntr

Stochastic gradient descent (SGD)

Update 8D = 9O — yv,7(9®)

n N
Vol (O =—Zv LW
o/ (0) Nl__1 0 with somey > 0

When N is very large, the summation can involve summing a many terms
Also, it can be an issue to keep all data points in the computer memory at the same time

Subsampling a small set from the full training set might be more useful

In SGD, one random samples (without replacement) a training pair (x(i),y(i)) from the full training dataset, and

Updates ¢+ = g(®) — v, (9®)
with somey > 0

* Pros: SGD can make significant progress before it has even looked at
the entire data!

* Cons: It uses an approximate estimate of gradient. So there is no
guarantee that each step will decrease the loss

Stochastic gradient descent (SGD)

" We see many fluctuations. Why ? Because we are making greedy decisions

® Each data point is trying to push the parameters in a direction most favorable to it (without being aware of how
the parameter update affects other points)

" A parameter update which is locally favorable to one point may harm other points (its almost as if the data points
are competing with each other)

" There is no guarantee that each local greedy move will reduce the global error

* Can we reduce the oscillations by improving our stochastic estimates of the
gradient (currently estimated from just 1 data point at a time)?

* Yes, let’s look at mini-batch SGD

10

Mini-batch gradient descent

* Compute the gradients on a medium-sized set of training examples, called a mini-batch
* Note that the algorithm updates the parameters after it sees a batch size B number of data points
* The stochastic estimates of gradients here are slightly better and less noisy

* Batchsize = 1 leads to SGD! Typical batch sizes are 64, 128, 256

theta, eta, epochs = -1, 8.8861, 186
batch size = 64
num_points seen =8
for 1 in range(epochs):
dtheta = @

for x,t in zip(X,T):
dtheta += grad theta(theta, x, t)
num_points seen += 1

it num_points seen % batch _size ==
seen one mini-batch
theta = theta - eta * dtheta / batch_size
dtheta = 8 # reset gradients

11

Performance of mini-batch gradient descent

>3 w—= Stochastic

3.61| —= Mini-batch
3.4/ | ==e Batch

The mini-batch size B is a hyperparameter that needs to be set
* Large batches: converge in fewer parameter updates because each stochastic gradient is less noisy

* Small batches: perform more parameter updates because each one requires less computation

12

Things to remember
m N i : . Number of iterations
N is the total number of training examples Algorithm Batch size o }
in 1 epoc

" B is the mini batch size Batch GD N 1

® 1 epoch = one pass over the entire data SGD 1 N
.y - N

® 1] iteration = one update step of the parameters Mini-batch GD b /B

SGD

13

Learning rate

Update 8D = () — yv,7(8®)
with somey > 0

N
Vo] (0) = 1 VoL@
o/ N 0
=1

" Learning rate y determines how big the @-step to take at each iteration

" |n practice we do not know what learning rate y to choose

E 3

J(8)

fr ' g fr

(a) Low learning rate ¥ = 0.05 (b) High learning rate y = 1.2 (¢) Good learning rate y = 0.3

" v is usually selected by the user, or it could be viewed as a hyperparameter

14

Different modifications to Gradient Descent

" Different modifications that can be applied to GD, SGD or mini-batch GD to improve convergence to a solution
(possibly a local minimum)

" Two lines of improvements to traditional GD (or SGD or mini-batch GD)

O+ 9O 4y Vej(g(t))

\
learmn% %mA\en\' of loss)
Tate w.1-+ porameter)

Adaptively modify the gradients | Adaptively modify the learning rate
to accelerate learning to prevent end oscillations

* Momentum-based gradients * AdaGrad

* RMSProp
. __——>5ADAM :

" We will demonstrate these modifications on GD, but they are equally applicable to SGD and mini-batch GD as well

15

Momentum-based gradients

Intuition

" |f you are repeatedly being asked to move in the same direction, then you should gain some confidence and start
taking bigger steps in that direction

https://distill.pub/2017/momentum/

I | Starting Point

oo Slow learning along gentle slopes,
many steps taken to converge

" |f you move back-and-forth in different directions (i.e oscillations), then you should take smaller steps in the
oscillatory directions
@ starting Point

Oscillations across steep slopes

Optimum

Solution

16

Gradient descent with momentum

® Can we accelerate learning by looking at the past behaviour? Yes, use momentum

" |f you are repeatedly being asked to move in the same direction, then you should gain some confidence and start
taking bigger steps in that direction

" |f you move back-and-forth in different directions (i.e oscillations), then you should take smaller steps in the
oscillatory directions

" Gain momentum by looking at the past history of past gradients

Update rule

history
vecloy « Compute momentum
p « up® + ¥V (6)

e Perform parameter update
g+ g(©) _ p(t+1)

* uisadamping parameter, and should satisfying0 <u < 1

e ushould be slightly less than 1 (e.g. 0.9 or 0.99) .

Gradient descent with momentum

Moves faster on gentler slopes

.& Starting Point

\ Optimum

. 0

\\’/ﬁon

. Reduces oscillations with iterations on steeper slopes
. | Starting Point

Optimum

olution

18

Modifying learning rate

" |deal learning rate y should be
" Not too big (loss function may blow up, oscillations around minima)

" Not too small (takes longer to converge)

O+ 9O 4y Va](e(t))

Training
Loss

very high learning rate

low learning rate

high learning rate

good learning rate

v

Epoch 1

Modifying learning rate

" One learning rate for all parameters is not good

® Can we tune the learning rate for each parameter directions separately?

" E.g. We may want to move fast in one parameter direction compared to other

® Consider this toy problem with two parameters, we want to
" Aggressively reduce learning rate in vertical direction

" Gradually reduce learning rate in horizontal direction

02 A

791

Idea: Decay the learning rate for parameters in proportion to their gradient magnitude history
20

GD with Adaptive Gradients (AdaGrad)

" AdaGrad uses the magnitude of the gradient as a means of adjusting how quickly learning should occur

" Parameters with large gradient magnitudes are provided with a smaller learning rate

Update rule for AdaGrad *

* Getgradient
g = ng(e(t))

e Accumulate past gradient magnitudes in a history vector maani I'IAAe

oy s T e qredient
veclor
\

e Perform parameter update
ity g Y 4
Vst 4 ¢

 NOTE: The squaring and update operation is applied elementwise

elewf\'\l"ﬁ'.' 5€

so(uorfw*}

€ is a small additive constant
(1078) that ensures that we do not
divide by 0

The squaring operation gets rid of
signs (directions) of the gradients
accumulated, hence we keep the

magnitudes of gradients

21

Problems with AdaGrad

02 A

781

However, Adagrad decays the learning rate very aggressively (since it accumulates all past gradient magnitudes
and the denominator grows)

As a result, during later epochs, some of the parameters will start receiving very small updates because of the
decayed learning rate

" How can we prevent rapid growth of the denominator?

" Let’s look at RMSProp

22

Root Mean Square Propagation (RMSProp)

Trick: Focus more on the recent past

Update rule for RMSProp

* Get gradient
g = Ve](e(t))

* Accumulate moving average over the history vector
hislory —> s+ ge® 4 (1 — g)(g®)>
veclor
* Perform parameter update
pt+D) _ g _ ¥ __ 40
Vs 4 ¢

st = (1 - B) l(g(t))z n [)’(g(t_l))z n BZ(g(t—z))Z

921

A

=

+o]

0 (P <

~

P = 045, 0.9, 0-35

23

Adaptive Moment Estimation (ADAM)

Idea

* Do everything that RMSProp does to solve the decay problem of Adagrad
* Plus use momentum based on a cumulative history of the gradients

* ADAM = RMSProp + Momentum

Get gradient
g = Vej(g(t))

In prochce
* Compute momentum
p*Y) < gip® + (1 -p)g"® B, = © 2
* Accumulate past gradient step sizes in a history vector lQ:{ = O 353

2
SED < 50 + (1 - £,)(9®)

Perform parameter update
pt+1) g(t) _ 14 p(t+1)
Vst 4 ¢

24

	Slide 1: APL 405: Machine Learning for Mechanics Lecture 12: Parameter Optimization
	Slide 2: Recap
	Slide 3: Optimization in Machine Learning (ML)
	Slide 4: Convex functions
	Slide 5: Gradient of a cost function
	Slide 6: Gradient Descent
	Slide 7: Batch gradient descent (Batch GD)
	Slide 8: Batch gradient descent (Batch GD)
	Slide 9: Stochastic gradient descent (SGD)
	Slide 10: Stochastic gradient descent (SGD)
	Slide 11: Mini-batch gradient descent
	Slide 12: Performance of mini-batch gradient descent
	Slide 13: Things to remember
	Slide 14: Learning rate
	Slide 15: Different modifications to Gradient Descent
	Slide 16: Momentum-based gradients
	Slide 17: Gradient descent with momentum
	Slide 18: Gradient descent with momentum
	Slide 19: Modifying learning rate
	Slide 20: Modifying learning rate
	Slide 21: GD with Adaptive Gradients (AdaGrad)
	Slide 22: Problems with AdaGrad
	Slide 23: Root Mean Square Propagation (RMSProp)
	Slide 24: Adaptive Moment Estimation (ADAM)

