
APL 405: Machine Learning for Mechanics

Lecture 12: Parameter Optimization

by

Rajdip Nayek

Assistant Professor,
Applied Mechanics Department,

IIT Delhi

Instructor email: rajdipn@am.iitd.ac.in

Recap

2

• We looked at different types of loss functions for regression and classification

• Learning the parameters of a chosen parametric model often requires minimizing an appropriate loss funciton

• An ML engineer therefore needs to be familiar with some strategies to solve optimization problems

• In this lecture, we will introduce some ideas behind some of the optimization methods used in ML

Optimization in Machine Learning (ML)

3

▪ Optimization→ Finding the minimum or maximum of an objective function

▪ A maximization problem can be formulated as a minimization problem

෡𝜽 = argmax
𝜽

𝐽 𝜽 = argmin
𝜽

−𝐽 𝜽

So we will limit ourselves to minimization problems only

▪ Optimization in ML is primarily used in two ways:

▪ Training a model by minimizing the cost function w.r.t. the model parameters

▪ Objective function : 𝐽 𝜽

▪ Optimization variable: 𝜽

▪ Tuning hyperparameters, such as the regularization parameter 𝜆

▪ Objective function : 𝐸hold−out

▪ Optimization variable: Hyperparameters (e.g. 𝜆)

Convex functions

4

▪ An important class of objective functions are convex functions

▪ Optimization is much easier for convex objective functions, and it is a good idea to consider whether a non-
convex optimization can be reformulated into a convex problem (but it is not always possible)

▪ Convex functions have unique minimum and no other local minima

▪ Examples of convex functions are cost functions for logistic regression and linear regression

▪ However, most problems in ML do not lead to convex functions

Gradient of a cost function

5

▪ Training examples: 𝒙(1), 𝑡 1 , 𝒙(2), 𝑡 2 , ⋯ , 𝒙(𝑁), 𝑡 𝑁

▪ Let’s say the chosen model be: 𝑦 = 𝑓𝜽 𝒙

▪ Cost function → Average over individual training losses

𝐽 𝜽 =
1

𝑁
෍

𝑖=1

𝑁

𝐿 𝑦 𝑖 , 𝑓𝜽 𝒙 𝑖

▪ Gradient of loss function w.r.t. parameter 𝜽

∇𝜽𝐽 𝜽 = ∇𝜽
1

𝑁
෍

𝑖=1

𝑁

𝐿 𝑦 𝑖 , 𝑓𝜽 𝒙 𝑖

∇𝜽𝐽 𝜽 =
1

𝑁
෍

𝑖=1

𝑁

∇𝜽𝐿
𝑖

Note: 𝜽 would represent
hyperparameters in the case
of hyperparameter
optimization

Gradient Descent

6

▪ Gradient of loss function w.r.t. parameter 𝜽

▪ ∇𝜽𝐽 𝜽 has the same dimension as 𝜽

▪ ∇𝜽𝐽 𝜽 describes the direction in which 𝐽(𝜽) increases. Therefore,−∇𝜽𝐽 𝜽 describes the direction in
which 𝐽(𝜽) decreases

▪ Taking a (small) step in the direction of the negative gradient will reduce the value of cost function

𝐽 𝜽 − 𝛾∇𝜽𝐽 𝜽 ≤ 𝐽 𝜽 for some 𝛾 > 0

▪ This suggests that if we have 𝜽(𝑡) and want to select 𝜽(𝑡+1) such that 𝐽 𝜽(𝑡+1) ≤ 𝐽 𝜽(𝑡) , we should

∇𝜽𝐽 𝜽 =
1

𝑁
෍

𝑖=1

𝑁

∇𝜽𝐿
𝑖

Update 𝜽(𝑡+1) = 𝜽(𝑡) − 𝛾∇𝜽𝐽 𝜽
(𝑡)

with some 𝛾 > 0
𝛾 is called the learning rate

GD is a local optimizer, there is no guarantee that it will find the global minimum

Batch gradient descent (Batch GD)

7

▪ Specify a learning rate, compute the total gradient ∇𝜽𝐽 𝜽 by averaging over all individual loss function gradients
for every training example, and then update the parameters 𝜽

▪ The algorithm goes over the entire data once before updating the parameters

▪ This is known as batch gradient descent (BGD), since we treat the entire training set as a batch

• Pros: There is no approximation in gradient calculation. Each update
step guarantees that the loss will decrease, if 𝛾 is small enough

• Cons: However, Batch GD can be very time-consuming for a large
datasets (very large 𝑁), due the summation over 𝑁 datapoints

∇𝜽𝐽 𝜽 =
1

𝑁
෍

𝑖=1

𝑁

∇𝜽𝐿
𝑖 Update 𝜽(𝑡+1) = 𝜽(𝑡) − 𝛾∇𝜽𝐽 𝜽

(𝑡)

with some 𝛾 > 0

Batch gradient descent (Batch GD)

8

∇𝜽𝐽 𝜽 =
1

𝑁
෍

𝑖=1

𝑁

∇𝜽𝐿
𝑖 Update 𝜽(𝑡+1) = 𝜽(𝑡) − 𝛾∇𝜽𝐽 𝜽

(𝑡)

with some 𝛾 > 0

▪ Batch gradient descent treat the entire training set as a single batch

▪ Updates the parameter vector after each full pass (epoch) over the entire dataset

Stochastic gradient descent (SGD)

9

▪ When 𝑁 is very large, the summation can involve summing a many terms

▪ Also, it can be an issue to keep all data points in the computer memory at the same time

▪ Subsampling a small set from the full training set might be more useful

▪ In SGD, one random samples (without replacement) a training pair 𝒙(𝑖), 𝑦 𝑖 from the full training dataset, and

• Pros: SGD can make significant progress before it has even looked at
the entire data!

• Cons: It uses an approximate estimate of gradient. So there is no
guarantee that each step will decrease the loss

∇𝜽𝐽 𝜽 =
1

𝑁
෍

𝑖=1

𝑁

∇𝜽𝐿
𝑖

Updates 𝜽(𝑡+1) = 𝜽(𝑡) − 𝛾∇𝜽𝐿
𝑖 𝜽(𝑡)

with some 𝛾 > 0

Update 𝜽(𝑡+1) = 𝜽(𝑡) − 𝛾∇𝜽𝐽 𝜽
(𝑡)

with some 𝛾 > 0

Stochastic gradient descent (SGD)

10

▪ We see many fluctuations. Why ? Because we are making greedy decisions

▪ Each data point is trying to push the parameters in a direction most favorable to it (without being aware of how
the parameter update affects other points)

▪ A parameter update which is locally favorable to one point may harm other points (its almost as if the data points
are competing with each other)

▪ There is no guarantee that each local greedy move will reduce the global error

• Can we reduce the oscillations by improving our stochastic estimates of the
gradient (currently estimated from just 1 data point at a time)?

• Yes, let’s look at mini-batch SGD

Mini-batch gradient descent

11

• Compute the gradients on a medium-sized set of training examples, called a mini-batch

• Note that the algorithm updates the parameters after it sees a batch size 𝐵 number of data points

• The stochastic estimates of gradients here are slightly better and less noisy

• Batch size = 1 leads to SGD! Typical batch sizes are 64, 128, 256

Performance of mini-batch gradient descent

12

The mini-batch size B is a hyperparameter that needs to be set

• Large batches: converge in fewer parameter updates because each stochastic gradient is less noisy

• Small batches: perform more parameter updates because each one requires less computation

Things to remember

13

▪ 𝑁 is the total number of training examples

▪ 𝐵 is the mini batch size

▪ 1 epoch = one pass over the entire data

▪ 1 iteration = one update step of the parameters

Algorithm Batch size
Number of iterations

in 1 epoch

Batch GD 𝑁 1

SGD 1 𝑁

Mini-batch GD 𝐵 ~ ൗ𝑁 𝐵

Learning rate

14

▪ Learning rate 𝛾 determines how big the 𝜽-step to take at each iteration

▪ In practice we do not know what learning rate 𝛾 to choose

▪ 𝛾 is usually selected by the user, or it could be viewed as a hyperparameter

∇𝜽𝐽 𝜽 =
1

𝑁
෍

𝑖=1

𝑁

∇𝜽𝐿
𝑖 Update 𝜽(𝑡+1) = 𝜽(𝑡) − 𝛾∇𝜽𝐽 𝜽

(𝑡)

with some 𝛾 > 0

Different modifications to Gradient Descent

15

▪ Different modifications that can be applied to GD, SGD or mini-batch GD to improve convergence to a solution
(possibly a local minimum)

▪ Two lines of improvements to traditional GD (or SGD or mini-batch GD)

𝜽 𝑡+1 ← 𝜽 𝑡 + 𝛾 ∇𝜽𝐽 𝜽
𝑡

▪ We will demonstrate these modifications on GD, but they are equally applicable to SGD and mini-batch GD as well

Adaptively modify the gradients
to accelerate learning

Adaptively modify the learning rate
to prevent end oscillations

• Momentum-based gradients • AdaGrad
• RMSProp

ADAM

Momentum-based gradients

16

Intuition

▪ If you are repeatedly being asked to move in the same direction, then you should gain some confidence and start
taking bigger steps in that direction

▪ If you move back-and-forth in different directions (i.e oscillations), then you should take smaller steps in the
oscillatory directions

Slow learning along gentle slopes,
many steps taken to converge

https://distill.pub/2017/momentum/

Oscillations across steep slopes

Gradient descent with momentum

17

▪ Can we accelerate learning by looking at the past behaviour? Yes, use momentum

▪ If you are repeatedly being asked to move in the same direction, then you should gain some confidence and start
taking bigger steps in that direction

▪ If you move back-and-forth in different directions (i.e oscillations), then you should take smaller steps in the
oscillatory directions

▪ Gain momentum by looking at the past history of past gradients

• Compute momentum

𝒑 𝑡+1 ← 𝜇𝒑 𝑡 + 𝛾∇𝜽𝐽 𝜽
𝑡

• Perform parameter update

𝜽 𝑡+1 ← 𝜽 𝑡 − 𝒑 𝑡+1

Update rule

−𝛾∇𝜽𝐽 𝜽
𝑡

−𝜇𝒑 𝑡

𝜽 𝑡

𝜽 𝑡+1

−𝒑 𝑡+1

• 𝜇 is a damping parameter, and should satisfying 0 ≤ 𝜇 ≤ 1
• 𝜇 should be slightly less than 1 (e.g. 0.9 or 0.99)

Gradient descent with momentum

18

Moves faster on gentler slopes

Reduces oscillations with iterations on steeper slopes

Modifying learning rate

19

▪ Ideal learning rate 𝛾 should be

▪ Not too big (loss function may blow up, oscillations around minima)

▪ Not too small (takes longer to converge)

𝜽 𝑡+1 ← 𝜽 𝑡 + 𝛾 ∇𝜽𝐽 𝜽
𝑡

Training
Loss

Epoch

very high learning rate

high learning rate

low learning rate

good learning rate

Modifying learning rate

20

▪ One learning rate for all parameters is not good

▪ Can we tune the learning rate for each parameter directions separately?

▪ E.g. We may want to move fast in one parameter direction compared to other

▪ Consider this toy problem with two parameters, we want to

▪ Aggressively reduce learning rate in vertical direction

▪ Gradually reduce learning rate in horizontal direction

𝜃2

𝜃1

Idea: Decay the learning rate for parameters in proportion to their gradient magnitude history

GD with Adaptive Gradients (AdaGrad)

21

Update rule for AdaGrad

• Get gradient

𝒈 𝑡 = ∇𝜽𝐽 𝜽
𝑡

• Accumulate past gradient magnitudes in a history vector

𝒔 𝑡+1 ← 𝒔 𝑡 + 𝒈 𝑡 2

• Perform parameter update

𝜽 𝑡+1 ← 𝜽 𝑡 −
𝛾

𝒔 𝑡+1 + 𝜖
𝒈 𝑡

▪ AdaGrad uses the magnitude of the gradient as a means of adjusting how quickly learning should occur

▪ Parameters with large gradient magnitudes are provided with a smaller learning rate

• NOTE: The squaring and update operation is applied elementwise

• 𝜖 is a small additive constant
10−8 that ensures that we do not

divide by 0

• The squaring operation gets rid of
signs (directions) of the gradients
accumulated, hence we keep the
magnitudes of gradients

Problems with AdaGrad

22

▪ However, Adagrad decays the learning rate very aggressively (since it accumulates all past gradient magnitudes
and the denominator grows)

▪ As a result, during later epochs, some of the parameters will start receiving very small updates because of the
decayed learning rate

▪ How can we prevent rapid growth of the denominator?

▪ Let’s look at RMSProp

𝜃2

𝜃1

Root Mean Square Propagation (RMSProp)

23

Update rule for RMSProp

• Get gradient

𝒈 𝑡 = ∇𝜽𝐽 𝜽
𝑡

• Accumulate moving average over the history vector

𝒔 𝑡+1 ← 𝛽𝒔 𝑡 + (1 − 𝛽) 𝒈 𝑡 2

• Perform parameter update

𝜽 𝑡+1 ← 𝜽 𝑡 −
𝛾

𝒔 𝑡+1 + 𝜖
𝒈 𝑡

𝒔 𝑡+1 = (1 − 𝛽) 𝒈 𝑡 2
+ 𝛽 𝒈 𝑡−1 2

+ 𝛽2 𝒈 𝑡−2 2
+⋯

Trick: Focus more on the recent past
𝜃2

𝜃1

Adaptive Moment Estimation (ADAM)

24

• Do everything that RMSProp does to solve the decay problem of Adagrad

• Plus use momentum based on a cumulative history of the gradients

• ADAM = RMSProp + Momentum

Idea

• Get gradient

𝒈 𝑡 = ∇𝜽𝐽 𝜽
𝑡

• Compute momentum

𝒑 𝑡+1 ← 𝛽1𝒑
𝑡 + (1 − 𝛽1)𝒈

𝑡

• Accumulate past gradient step sizes in a history vector

𝒔 𝑡+1 ← 𝛽2𝒔
𝑡 + (1 − 𝛽2) 𝒈

𝑡 2

• Perform parameter update

𝜽 𝑡+1 ← 𝜽 𝑡 −
𝛾

𝒔 𝑡+1 + 𝜖
𝒑 𝑡+1

	Slide 1: APL 405: Machine Learning for Mechanics Lecture 12: Parameter Optimization
	Slide 2: Recap
	Slide 3: Optimization in Machine Learning (ML)
	Slide 4: Convex functions
	Slide 5: Gradient of a cost function
	Slide 6: Gradient Descent
	Slide 7: Batch gradient descent (Batch GD)
	Slide 8: Batch gradient descent (Batch GD)
	Slide 9: Stochastic gradient descent (SGD)
	Slide 10: Stochastic gradient descent (SGD)
	Slide 11: Mini-batch gradient descent
	Slide 12: Performance of mini-batch gradient descent
	Slide 13: Things to remember
	Slide 14: Learning rate
	Slide 15: Different modifications to Gradient Descent
	Slide 16: Momentum-based gradients
	Slide 17: Gradient descent with momentum
	Slide 18: Gradient descent with momentum
	Slide 19: Modifying learning rate
	Slide 20: Modifying learning rate
	Slide 21: GD with Adaptive Gradients (AdaGrad)
	Slide 22: Problems with AdaGrad
	Slide 23: Root Mean Square Propagation (RMSProp)
	Slide 24: Adaptive Moment Estimation (ADAM)

