
APL 108 Tutorial 6 solutions
Q1. Think of the following displacement field in the body:

u1 = 0.05x1 + 0.03x2
2,

u2 = 0.07x1x2 + 0.08x2
1,

u3 = 0.

(a) Find the longitudinal strain of a line element along e1 direction at any point
in the body.

(b) Determine the shear strain between line elements along e1 and e2

(c) Find volumetric strain for this displacement field. Does it vary from point
to point?

(d) What is the shear strain between line elements along e1 and e3 at any point
(x1, x2)?

(e) Determine the average local rigid-body rotation.

Solution:

[∇ u] =



∂u1

∂x1

∂u1

∂x2

∂u1

∂x3
∂u2

∂x1

∂u2

∂x2

∂u2

∂x3
∂u3

∂x1

∂u3

∂x2

∂u3

∂x3



=

 0.05 0.06x2 0
0.07x2 + 0.16x1 0.07x1 0

0 0 0


(a) Longitudinal strain along e1 direction

ϵnn =
(
ϵ · n

)
· n, n = e1

ϵ11 = ∂u1

∂x1
= 0.05 [ for all the points ]

(b) Shear strain between line elements along e1 and e2: γ12

γ12 = 2
(
ϵ · n

)
· m, n = e1, m = e2

= ∂u1

∂x2
+ ∂u2

∂x1

= 0.06x2 + 0.07x2 + 0.16x1

= 0.13x2 + 0.16x1
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(c) Volumetric strain: ϵv

ϵv = ∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3

= 0.05 + 0.07x1 + 0
= 0.05 + 0.07x1

(changes from pt. to pt. if x1 changes)

(d) Shear strain between line elements along e1 and e3: γ13

γ13 = ∂u1

∂x3
+ ∂u3

∂x1

= 0 + 0
= 0

(e) Average local rigid-body rotation tensor is given by the anti-symmetric tensor W

[
W
]

= 1
2
(
[∇ u] −

[
∇ uT

])

=


0 1

2

(
∂u1

∂x2
− ∂u2

∂x1

)
0

0 0
anti-sym 0



1
2

(
∂u1

∂x2
− ∂u2

∂x1

)
=1

2 (0.06x2 − 0.07x2 − 0.16x1)

= − 0.005x2 − 0.08x1

Q2. The displacement field for a body is given by

u = k(x2 + y)̂i + k(y + z)ĵ + k(x2 + 2z2)k̂

Find the volumetric strain, shear strains γxy and γyz, and the average local
rotation tensor of the body at point (2, 2, 3).

Hint:
Similar to the solution of Q1
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Q3. The displacement gradient matrix at a point in a body is given by

[
H
]

=


∂u
∂x

∂u
∂y

0
∂v
∂x

∂v
∂y

0
0 0 0


Write the condition for zero average local rotation.

Solution:
For zero average local rotation, W = 0
We are given ∇ u = H from which W can be derived as follows:

[
W
]

=


0 1

2

(
∂u1

∂x2
− ∂u2

∂x1

)
1
2

(
∂u1

∂x3
− ∂u3

∂x1

)

0 1
2

(
∂u2

∂x3
− ∂u3

∂x2

)
anti-sym 0


All the components of the matrix are automatically zero except its (1,2) component and
hence, to have zero infinitesimal rotation,

1
2

(
∂u

∂y
− ∂v

∂x

)
= 0 ⇒ ∂u

∂y
= ∂v

∂x
.
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Q4. For a circular rod subjected to a torque (shown in figure below), the displacement
components obtained at any point (x, y, z) are as follows:

o

x

y

z

ux = −τyz + ay + bz + c,

uy = τxz − ax + ez + f,

uz = −bx − ey + k

where a, b, c, e, f and k are constants and τ denotes twist.

(a) Select the constants a, b, c, e, f , k such that the end section z = 0 is fixed
in the following manner:

• Point o has no displacement.
• The element ∆z of the axis rotates neither in the plane xoz nor in the

plane yoz

• The element ∆y of the axis does not rotate in the plane xoy.
(b) Determine the strain components.
(c) Verify whether these strain components satisfy the compatibility conditions.

Solution:

(a) • Point ‘o’ has no displacement ⇒ ux|(0,0,0) = uy|(0,0,0) = uz|(0,0,0) = 0

⇒ c = 0, f = 0, k = 0.

• All local rotations of line elements at the fixed end z = 0 are zero ⇒ W |(0,0,0)= 0

[
W
]

=


0 1

2

(
∂u1

∂x2
− ∂u2

∂x1

)
1
2

(
∂u1

∂x3
− ∂u3

∂x1

)

0 1
2

(
∂u2

∂x3
− ∂u3

∂x2

)
anti-sym 0



=


0 1

2 [−τz + a − (τz − a)] 1
2 [−τy + b − (−b)]

0 1
2 [τx + e − (−e)]

anti-sym 0



=


0 (−τz + a) 1

2 (−τy + 2b)

0 1
2 (τx + 2e)

anti-sym 0


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∴
[
W
]

|(0,0,0) =

0 a b
0 0 e
0 0 0


Evaluating the above we get

a = 0, b = 0, e = 0.

(b) Strain components

[
ϵ
]

=



∂ux

∂x

1
2

(
∂ux

∂y
+ ∂uy

∂x

)
1
2

(
∂ux

∂z
+ ∂uz

∂x

)
1
2

(
∂ux

∂y
+ ∂uy

∂x

)
∂uy

∂y

1
2

(
∂uy

∂z
+ ∂uz

∂y

)
1
2

(
∂ux

∂z
+ ∂uz

∂x

)
1
2

(
∂uy

∂z
+ ∂uz

∂y

)
∂uz

∂z



=


0 0 1

2 (−τy)

0 1
2 (τx)

sym 0

 .

Note that γ12 = 0: the line elements in the cross-section undergo just rigid rotation
during twist. Of course, different cross-sections rotate by different amounts, i.e., τz
(see part (a)).

(c) Strain compatibility is naturally satisfied since we derived the strain components from
displacement functions. It is only when strain components are directly prescribed that
we need to check for strain compatibility.

Q5. For the displacement field ux = k(x2 + 2z), uy = k(4x + 2y2 + z), uz = 4kz2

with k = 0.001, determine the change in angle between two lines segments PQ
and PR at P (2, 2, 3) having direction cosines before deformation as follows:

PQ: nx1 = 0, ny1 = nz1 = 1√
2

PR: nx2 = 1, ny2 = nz2 = 0

Hint: Very similar to Q1 and Q2, only the direction of line elements are different

γP Q,P R =
(
ϵ nP R

)
· nP Q and then evaluate at P(2,2,3)
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Q6. Verify whether the following strain field satisfies the equations of compatibility.
Here p is a constant.

ϵxx = py, ϵyy = px, ϵzz = 2p(x + y)

γxy = p(x + y), ϵyz = 2pz, ϵzx = 2pz

Solution: The six strain compatibility conditions are

∂2ϵxx

∂y2 + ∂2ϵyy

∂x2 = ∂2γxy

∂x∂y
,

∂2ϵyy

∂z2 + ∂2ϵzz

∂y2 = ∂2γyz

∂y∂z
,

∂2ϵxx

∂z2 + ∂2ϵzz

∂x2 = ∂2γxz

∂x∂z
,

∂

∂z

(
∂γyz

∂x
+ ∂γzx

∂y
− ∂γxy

∂z

)
= 2 ∂2ϵzz

∂x∂y
,

∂

∂x

(
∂γxy

∂z
+ ∂γxz

∂y
− ∂γyz

∂x

)
= 2∂2ϵxx

∂x∂z
,

∂

∂y

(
∂γxy

∂z
+ ∂γyz

∂x
− ∂γxz

∂y

)
= 2∂2ϵyy

∂x∂z
.

Notice that the strain compatibility equations involve second derivative of each of the strain
components. As all the prescribed strain component functions are linear in (x, y, z), their
second derivartives will automatically vanish. Hence, the six equations are trivially satisfied.
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Q7. Given the following formulas for strain components:

ϵxx = 5 + x2 + y2 + x4 + y4,

ϵyy = 6 + 3x2 + 3y2 + x4 + y4,

γxy = 10 + 4xy(x2 + y2 + 2),
ϵzz = γyz = γzx = 0.

(a) Determine whether the above strain field is possible. If it is possible, de-
termine the displacement components in terms of x and y. Assume that
ux = uy = 0 and ωxy = 0 at the origin.

(b) For the state of strain given in previous problem, write down the spherical
and deviatoric parts and also determine the volumetric strain.

Solution: It can be observed that the above strain field represents a plane strain condition,
where

ϵxx = 5 + x2 + y2 + x4 + y4, (1)
ϵyy = 6 + 3x2 + 3y2 + x4 + y4, (2)
γxy = 10 + 4xy

(
x2 + y2 + 2

)
, (3)

ϵzz = γyz = γzx = 0 (all strains along z-direction is zero)

(a) As this is a plane-strain case, only one out of the six strain compatibility condition
need to be checked, other five are trivially satisfied. The condition to be checked is

∂2ϵxx

∂y2 + ∂2ϵyy

∂x2 = ∂2γxy

∂x∂y
. (4)

Using Eq. (1) and Eq. (2),

∂2ϵxx

∂y2 + ∂2ϵyy

∂x2 =
(
2 + 12y2

)
+
(
6 + 12x2

)
= 12x2 + 12y2 + 8 (5)

and using Eq. (3),
∂2γxy

∂x∂y
= 12x2 + 12y2 + 8 (6)

As Eq. (5) and Eq. (6) are equal, the strain fields are physically realizable.

To determine the displacement components ux and uy, one can integrate the strains
ϵxx and ϵyy, respectively, and then determine the integration constants using shear
strain relation and the prescribed boundary conditions.

ϵxx = ∂ux

∂x
⇒ ux =

∫
ϵxxdx = 5x + x3

3 + y2x + x5

5 + xy4 + f(y)

Similarly,

ϵyy = ∂uy

∂y
⇒ uy =

∫
ϵyydy = 6y + 3x2y + y3 + x4y + y5

5 + g(x)
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Note, f(y) and g(x) are not functions of z because we are dealing with plane-strain
case: ux and uy in such a case are independent of z. Let’s now obtain γxy from ux and
uy:

γxy = ∂ux

∂y
+ ∂uy

∂x

= 2xy + 4xy3 + f ′(y) + 6xy + 4x3y + g′(x) (7)

Upon comparing it with the given γxy from Eq. (3), we get

f ′(y) + g′(x) = 10
⇒ f ′(y) = 10 − g′(x) (8)

The LHS is a function of y whereas the RHS is a function of x which can be true only
when they are both constants, i.e.,

f ′(y) = 10 − g′(x) = d

⇒ f(y) = c1y + c2, and g(x) = (10 − d)x + c3.

In order to obtain the constants d, c1, c2, and c3, let us use the prescribed boundary
conditions. Using the displacement BC at origin:

ux|origin = 0 ⇒ f(0) = 0 ⇒ c2 = 0,

uy|origin = 0 ⇒ g (0) = 0 ⇒ c3 = 0,

wxy|origin = 0 ⇒ 1
2

(
∂ux

∂y
− ∂uy

∂x

)
|origin = 0

⇒ f ′(y) − g′(x) |origin = 0
⇒ f ′(0) − g′(0) = 0
⇒ d − (10 − d) = 0
⇒ d = 5.

We thus have

f(y) = 5y, and g(x) = 5x

Therefore the displacement components are:

ux = 5x + x3

3 + y2x + x5

5 + xy4 + 5y,

uy = 6y + 3x2y + y3 + x4y + y5

5 + 5x.

(b) • Spherical (or hydrostatic) strain tensor = 1
3J1I where

J1 = ϵxx + ϵyy + ϵzz

=
(
5 + x2 + y2 + x4 + y4

)
+
(
6 + 3x2 + 3y2 + x4 + y4

)
+ 0

= 11 + 4x2 + 4y2 + 2x4 + 2y4.
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• Deviatoric strain tensor = ϵ − 1
3J1I and its matrix representation is d1 γxy/2 0

d2 0
sym 0


where d1 =

(
5 + x2 + y2 + x4 + y4

)
− 1

3
(
11 + 4x2 + 4y2 + 2x4 + 2y4

)
,

d2 =
(
6 + 3x2 + 3y2 + x4 + y4

)
− 1

3
(
11 + 4x2 + 4y2 + 2x4 + 2y4

)
.

• Volumetric strain ϵv = ϵxx + ϵyy + ϵzz = J1.
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