APL 108 Tutorial 6 solutions

Q1. Think of the following displacement field in the body:

u; = 0.05z1 + 0.03z3,
ug = 0.07z129 + 0.0Sx%,
ug = 0.
(a) Find the longitudinal strain of a line element along e, direction at any point
in the body.
(b) Determine the shear strain between line elements along e; and e,

(c¢) Find volumetric strain for this displacement field. Does it vary from point
to point?

(d) What is the shear strain between line elements along e, and e; at any point
(1'1, I2>?

(e) Determine the average local rigid-body rotation.

Solution:
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(a) Longitudinal strain along e; direction
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(b) Shear strain between line elements along e; and ey: 712
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(c) Volumetric strain: e,
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(changes from pt. to pt. if z; changes)

(d) Shear strain between line elements along e; and e3: 713
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(e) Average local rigid-body rotation tensor is given by the anti-symmetric tensor W.
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Q2. The displacement field for a body is given by

u=k(z®+ )i+ k(y + 2)) + k(z® + 222k

Find the volumetric strain, shear strains 7,, and 7,., and the average local
rotation tensor of the body at point (2,2, 3).

Hint:
Similar to the solution of Q1



Q3. The displacement gradient matrix at a point in a body is given by
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Write the condition for zero average local rotation.

Solution:
For zero average local rotation, W = 0
We are given V u = H from which W can be derived as follows:
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All the components of the matrix are automatically zero except its (1,2) component and
hence, to have zero infinitesimal rotation,
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Q4. For a circular rod subjected to a torque (shown in figure below), the displacement
components obtained at any point (x,y, z) are as follows:

Uy = —TYz + ay + bz + ¢,
uy =702 —ax +ez + f,

u, = —br —ey+k
where a, b, ¢, e, f and k are constants and 7 denotes twist.
(a) Select the constants a, b, ¢, e, f, k such that the end section z = 0 is fixed

in the following manner:

e Point o0 has no displacement.

e The element Az of the axis rotates neither in the plane xoz nor in the
plane yoz

e The element Ay of the axis does not rotate in the plane zoy.
(b) Determine the strain components.

(c) Verify whether these strain components satisfy the compatibility conditions.

Solution:

(a) e« Point ‘0" has no displacement = u,|(,0,0) = ty(0,0,0) = ©=|(0,0,0) = 0

= ¢c=0, f=0, k=0.

« All local rotations of line elements at the fixed end z = 0 are zero = W |(0,070): 0
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Evaluating the above we get

(b) Strain components
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Note that 715 = 0: the line elements in the cross-section undergo just rigid rotation
during twist. Of course, different cross-sections rotate by different amounts, i.e., 7z

(see part (a)).

(c) Strain compatibility is naturally satisfied since we derived the strain components from
displacement functions. It is only when strain components are directly prescribed that
we need to check for strain compatibility.

Q5. For the displacement field u, = k(z* + 22), u, = k(4x + 2y* + 2), u, = 4kz?
with & = 0.001, determine the change in angle between two lines segments PQ
and PR at P(2,2,3) having direction cosines before deformation as follows:

1

PQ: Ng1 = 07 Ny1r = Nz = V2

PR: Nyo = 1, Nya2 = Nzo = 0

Hint: Very similar to Q1 and Q2, only the direction of line elements are different

YPQ.PR = (g @PR> -npg and then evaluate at P(2,2,3)




Q6. Verify whether the following strain field satisfies the equations of compatibility.
Here p is a constant.

€xz = PY, €yy = DT, €22 = Zp(flf + y)

Yoy = p(x + y), €yz = ZPZ, €z = 2192

Solution: The six strain compatibility conditions are
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Notice that the strain compatibility equations involve second derivative of each of the strain

components. As all the prescribed strain component functions are linear in (z,y, z), their
second derivartives will automatically vanish. Hence, the six equations are trivially satisfied.



Q7. Given the following formulas for strain components:

€os = 5+ 27 +¢* + 2t + o,
€yy = 6+ 3%% + 3y° + 2 + ¢,
Yoy = 10 + dzy(x® + y° + 2),
E = Vs = Ay = U

(a) Determine whether the above strain field is possible. If it is possible, de-
termine the displacement components in terms of x and y. Assume that
Uy = uy = 0 and w,, = 0 at the origin.

(b) For the state of strain given in previous problem, write down the spherical
and deviatoric parts and also determine the volumetric strain.

Solution: It can be observed that the above strain field represents a plane strain condition,
where

€e = 5 + 22 + 9y + 2t + (1)

€ = 6 + 307 + 3y* + ' + ¢, (2)

Yoy = 10 + day (2* + ¢* + 2), (3)
€22 = Vy: = V2« = 0 (all strains along z-direction is zero)

(a) As this is a plane-strain case, only one out of the six strain compatibility condition
need to be checked, other five are trivially satisfied. The condition to be checked is

0% n 826yy B 82%y

= . 4
0y? 0x? 0xdy (4)
Using Eq. and Eq. ,
Pera P eyy 2 2 2 2
5t = (2 +12%) + (6 + 122%) = 122® + 12* + 8 (5)
and using Eq. ,
827:011 2 2
= 12 12 8 6
900y zt + 1297 + (6)

As Eq. and Eq. @ are equal, the strain fields are physically realizable.

To determine the displacement components u, and u,, one can integrate the strains
€ze and €,,, respectively, and then determine the integration constants using shear
strain relation and the prescribed boundary conditions.
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Similarly,
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€yy = —ayy = u, = /eyydy = 6y + 32%y + y* + 2y +y€ + g(x)




(b)

Note, f(y) and g(z) are not functions of z because we are dealing with plane-strain
case: u, and u, in such a case are independent of z. Let’s now obtain v,, from u, and
Uy

Ou, | Ouy
dy ox
= 2zy + 4zy® + f'(y) + 6ay+42°y + ¢'(2) (7)

Vey =

Upon comparing it with the given ,, from Eq. , we get

f'ly) + ¢(x) = 10
= f'(y) = 10— g'(x) (8)

The LHS is a function of y whereas the RHS is a function of x which can be true only
when they are both constants, i.e.,

flly) = 10-g'(z) =d
= f(y) = ay + c2, and g(z) = (10 — d)z + cs.

In order to obtain the constants d, ¢y, co, and c3, let us use the prescribed boundary
conditions. Using the displacement BC at origin:

Ua:|origin =0 = f(O) = 0= =0,
uy‘om’gin =0= g(O) = 0=c3=0,

1 (Ouy, ou
wxy|origin =0= ( - y) |origm =0

2\ dy ox
= f'(y) = (@) lorigin = 0
= f(0) — ¢'(0) = 0
= d—(10—d) =0
= d=05>.

We thus have

Therefore the displacement components are:

z3 ) z° 4
uz:5x+§+y:)§+€+:ﬂy + by,
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uy = 6y + 32%y + y® + 2ty —l—% + .

 Spherical (or hydrostatic) strain tensor = %Jli where

Jl :exx+€yy+€zz
=(5+a?+ 2 +at +y') + (6+327 + 32 + 2t +4*) +0
= 11 + 42” + 49> + 22" + 2y*.



« Deviatoric strain tensor = € — 3.J1/ and its matrix representation is
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where d; = (5+x2+y2+$4+y4)—5(11+4x2+4y2+2x4+2y4),
1

dy = (6+3x2—|—3y2+$4+y4)—5(11+4$2+4y2+2x4—|—2y4).

« Volumetric strain €, = €, + €,y + €., = Ji.





