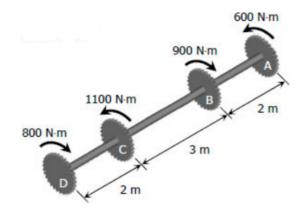
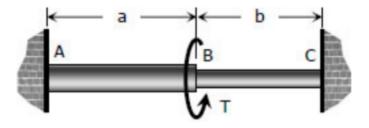
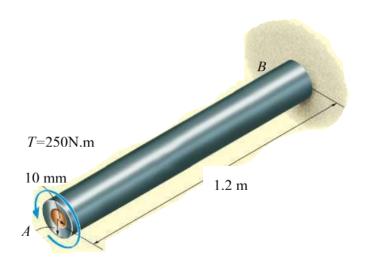

Tutorial 8: Extension and torsion

APL 108 - 2025 (Mechanics of Solids)


1. Determine the largest weight W that can be supported by two wires shown in figure shown below. The stress in either wire is not to exceed 207N/mm². The cross-sectional areas of wires AB and AC are 258mm² and 323mm², respectively.


- 2. A round bar of length L, which tapers uniformly from a diameter D at one end to a smaller diameter d at the other, is suspended vertically from the large end. If w is the weight per unit volume, find the elongation of ω the rod caused by its own weight. Use this result to determine the elongation of a cone suspended from its base.
- 3. The rigid bars AB and CD shown in figure below are supported by pins at A and C and the two rods. Determine the maximum force P that can be applied as shown if its vertical movement is limited to 5mm. Neglect the weights of all members.


4. An aluminum shaft with a constant diameter of 50mm is loaded by torques applied to gears attached to it as shown in Fig. Using G = 28GPa, determine the relative angle of twist of gear D relative to gear A.

5. The compound shaft shown in the figure below is attached to rigid supports. For the bronze segment AB, the diameter is 75mm, $\tau_{\rm tol,B} \leq 60 \rm MPa$, and $G=35 \rm GPa$. For the steel segment BC, the diameter is 50mm, $\tau_{\rm tol,S} \leq 80 \rm MPa$, and $G=83 \rm GPa$. If $a=2 \rm m$ and $b=1.5 \rm m$, compute the maximum torque T that can be applied.

6. The shaft shown in figure below is made from a steel tube, which is bonded to a brass core. If a torque of $T=250\mathrm{N}\cdot\mathrm{m}$ is applied at its end, plot the shear-stress distribution along a radial line of its cross-sectional area. Take $G_s=80\mathrm{GPa},~G_b=36\mathrm{GPa}$. (from Hibbeler, *Mechanics of Materials*, Ch 5)

