Section 8.5

8.5 Virtual Work

Fig. 8.5.1a.

When the mass is in equilibrium, F, +F,, =0, where F =—kx is the spring force

Consider a mass attached to a spring and pulled by an applied force F,,,

with X the distance from the spring reference position.

(a)

(b)
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Figure 8.5.1: a force extending an elastic spring; (a) block in equilibrium, (b) block
not at its equilibrium position

In order to develop a number of powerful techniques based on a concept known as
virtual work, imagine that the mass is not in fact at its equilibrium position but at an
(incorrect) non-equilibrium position X + X, Fig. 8.5.1b. The imaginary displacement oX
is called a virtual displacement. Define the virtual work 6W done by a force to be the
equilibrium force times this small imaginary displacement ox. It should be emphasized
that virtual work is not real work — no work has been performed since oX is not a real
displacement which has taken place; this is more like a “thought experiment”. The virtual
work of the spring force is then oW, = F ox = —kxdx. The virtual work of the applied

force is W, = F,, 6. The total virtual work is

W = W, +W,, = (—kx+ Fyy b (8.5.1)

spr

There are two ways of viewing this expression. First, if the system is in equilibrium
(—kx+F,, =0) then the virtual work is zero, W = 0. Alternatively, if the virtual work

is zero then, since oX is arbitrary, the system must be in equilibrium. Thus the virtual
work idea gives one an alternative means of determining whether a system is in
equilibrium.

The symbol ¢ is called a variation so that, for example, &X is a variation in the
displacement (from equilibrium).

Virtual work is explored further in the following section.
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8.5.1  Principle of Virtual Work: a single particle

A particle of mass m is acted upon by a number of forces, f,,f,, ..., , Fig. 8.5.2.

Suppose the particle undergoes a virtual displacement dU ; to reiterate, these impressed
forces f, do not cause the particle to move, one imagines it to be incorrectly positioned a

little away from the true equilibrium position.

Figure 8.5.2: a particle in equilibrium under the action of a number of forces

If the particle is moving with an acceleration a, the quantity —ma is treated as an inertial
force. The total virtual work is then (each term here is the dot product of two vectors)

oW = (ifi - ma]-éu (8.5.2)

Now if the particle is in equilibrium by the action of the effective (impressed plus inertial)
force, then

W =0 (8.5.3)

This can be expressed as follows:

The principle of virtual work (or principle of virtual displacements) I:
if a particle is in equilibrium under the action of a number of forces (including the inertial
force) the total work done by the forces for a virtual displacement is zero

Alternatively, one can define the external virtual work oW, = Zfi -oU and the virtual

kinetic energy SK =ma-du in which case the principle takes the form oW, , = K
(compare with the work-energy principle, Eqn. 8.1.10).

In the above, the principle of virtual work was derived using Newton’s second law. One
could just as well regard the principle of virtual work as the fundamental principle and
from it derive the conditions for equilibrium. In this case one can say that'

" note the word any here: this must hold for all possible virtual displacements, for it will always be possible
to find one virtual displacement which is perpendicular to the resultant of the forces, so that (Z f ) au=0

even though X f is not necessarily zero
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The principle of virtual work (or principle of virtual displacements) II:

a particle is in equilibrium under the action of a system of forces (including the inertial
force) if the total work done by the forces is zero for any virtual displacement of the
particle

Constraints

In many practical problems, the particle will usually be constrained to move in only
certain directions. For example consider a ball rolling over a table, Fig. 8.5.3. If the ball

is in equilibrium then all the forces sum to zero, R + Zf —ma =0, where one
distinguishes between the non-reaction forces f; and the reaction force R. If the virtual

displacement AU is such that the constraint is not violated, that is the ball is not allowed
to go “through” the table, then ou and R are perpendicular, the virtual work done by the

reaction force is zero and W = (Zf — ma)' A =0. This is one of the benefits of the

principle of virtual work; one does not need to calculate the forces of constraint R in
order to determine the forces f, which maintain the particle in equilibrium.

Figure 8.5.3: a particle constrained to move over a surface

The term kinematically admissible displacement is used to mean one that does not
violate the constraints, and hence one arrives at the version of the principle which is often
used in practice:

The principle of virtual work (or principle of virtual displacements) I11:

a particle is in equilibrium under the action of a system of forces (including the inertial
force) if the total work done by the forces (excluding reaction forces) is zero for any
kinematically admissible virtual displacement of the particle

Whether one uses a kinematically admissible virtual displacement and so disregard
reaction forces, or permit a virtual displacement that violates the constraint conditions
will usually depend on the problem at hand. In this next example, use is made of a
kinematically inadmissible virtual displacement.

Example

Consider a rigid bar of length L supported at its ends and loaded by a force F a distance a
from the left hand end, Fig. 8.5.3a. Reaction forces R,, R. act at the ends. Let point C

undergo a virtual displacement ou. From similar triangles, the displacement at B is
(a/L)ou. End A does not move and so no virtual work is performed there. The total

virtual work is
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SW = RC&—F%&J (8.5.4)

Note the minus sign here — the displacement at B is in a direction opposite to that of the
action of the load and hence the work is negative. The beam is in equilibrium when
oW =0 and hence R. =aF /L.

— D>

Figure 8.5.3: a loaded rigid bar; (a) bar geometry, (b) a virtual displacement at end
C
|

8.5.2  Principle of Virtual Work: deformable bodies

A deformable body can be imagined to undergo virtual displacements (not necessarily the
same throughout the body). Virtual work is done by the externally applied forces —
external virtual work — and by the internal forces — internal virtual work. Looking

again at the spring problem of Fig. 8.5.1, the external virtual work is oW, = F,, X and,

considering the spring force to be an “internal” force, the internal virtual work is
oW, . =—kxox . This latter virtual work can be re-written as oW, , = —-0U where dU is

int
the virtual potential energy change which occurs when the spring is moved a distance X
(keeping the spring force constant).

In the same way, the internal virtual work of an elastic body is the (negative of the)
virtual strain energy and the principle of virtual work can be expressed as

oW, =dJ| Principle of Virtual Work for an Elastic Body (8.5.4)

The principle can be extended to accommodate dissipation (energy loss), but only elastic
materials will be examined here.

The virtual strain energy for a uniaxial rod is derived next.
8.5.3  Virtual Strain Energy for a Uniaxially Loaded Bar

In what follows, to distinguish between the strain energy and the displacement, the former
will now be denoted by w and the latter by u.
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Consider a uniaxial bar which undergoes strains &. The strain is the unit change in
length and, considering an element of length dx, Fig. 8.5.4a, the strain is

[Ax+u(x+Ax) u(x)] Ax _du

8.5.5
AX T dx ( )
in the limit as AX — 0. With dw = ode, the strain energy density is
wetoso Lpgr - Lg(du) (8.5.6)
2 2 2 dx
and the strain energy is
L 2
U=jl - vﬂﬁd—“ dx (8.5.7)
© 2 dx o 2 Ldx

This is the actual strain energy change when the bar undergoes actual strains ¢ . For the
simple case of constant A and L and constant strain du/dx = A/L where A is the

elongation of the bar, Eqn. 8.5.7 reduces to U = AEA’ /2L (equivalent to Eqn. 8.2.2).

u(x) u(X+ AXx)
(@) :
X X + AX
AX
L U () (X + )

(b) I
| |

Figure 8.5.4: element undergoing actual and virtual displacements; (a) actual
displacements, (b) virtual displacements

It will now be shown that the internal virtual work done as material particles undergo
virtual displacements AU is given by oU , with U given by Eqn. 8.5.7.

Consider an element to “undergo” virtual displacements ou, Fig. 8.5.4b, which are, by
definition, measured from the actual displacements. The virtual displacements give rise
to virtual strains:

A(X+AX) —du(x) _ d(ou)
AX ~dx

o€ =

(8.5.8)

again in the limit as Ax — 0. Since ¢ = 5(du/dx), it follows that
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§(d_uj = d(5u) (8.5.9)
dx dx

In other words, the variation of the derivative is equal to the derivative of the variation®.

One other result is needed before calculating the internal virtual work. Consider a
function of the displacement, f(u). The variation of f when u undergoes a virtual

displacement is, by definition,

f(u+5u)—f(u)5u:£

od=fu+a)-~fu)= Y i

Su (8.5.10)

now in the limit as the virtual displacement 6u — 0. From this one can write

e

The stress o applied to the surface of the element under consideration is an “external
force”. The internal force is the equal and opposite stress on the other side of the surface
inside the element. The internal virtual work (per unit volume) is then oW = —oco¢ .
Since o is the actual stress, unaffected by the virtual straining,

2 2
SN = —Esds = —E(d—“jcs(d—”j __ 1 E5(d—“) — st E(d—“j (8.5.12)
dx dx 2 dx 2 dx

since the Young’s modulus is unaffected by any virtual displacement. The total work
done is then

2
W, =—5le Uy (8.5.13)
nt v2 dX

which, comparing with Eqn. 8.5.7, is the desired result, oW, , = -dU .

Example

Two rods with cross sectional areas A, A,, lengths L, L, and Young’s moduli E,, E,

and joined together with the other ends fixed, as shown in Fig. 8.5.5. The rods are
subjected to a force P where they meet. As the rods elongate/contract, the strain is simply
€=Uy /L, where uU; is the displacement of the point at which the force is applied. The

total elastic strain energy is, from Eqn. 8.5.7,

? this holds in general for any function; manipulations with variations form a part of a branch of
mathematics known as the Calculus of Variations, which is concerned in the main with minima/maxima
problems
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= E,A ul + E, A U2

u 8.5.14
TR T (8.5.14)
Introduce now a virtual displacement du, at B. The external virtual work is
OW_, = Pdug. The principle of virtual work, Eqn. 8.5.4, states that
EA E
Pou, =6 EALEA us (8.5.15)
2L, 2L,
applied force
P
B >
fixed ‘ ’ fixed
Figure 8.8.5: two rods subjected to a force P
From relation 8.5.10,
EA E
Pdu, =| —/—+ e UgUg (8.5.16)
Ll L2

The virtual displacement du; is arbitrary and so can be cancelled out, giving the result

-1

E,A EA

Ug =P 1+ 22 (8.5.17)
Ll L2

from which the strains and hence stresses can be evaluated. Note that the reaction forces
were not involved in this solution method.

|
8.5.4  Virtual Strain Energy for a Beam
The strain energy in a beam is given by Eqn. 8.2.7, viz.
L M 2
U =[x (8.5.18)
2El

Using the moment-curvature relation 7.4.37, M = El (d v/ dx? ), where Vv is the deflection
of the beam,
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L
El
U=|— 8.5.19
RER 0519
and the virtual strain energy is
d’v
N = 5j ( ]dx (8.5.20)
dx?

It is not easy to analyse problems using this expression and the principle of virtual work
directly, but this expression will be used in the next section in conjunction with the
related principle of minimum potential energy.

855 Problems

1. Consider a uniaxial bar of length L with constant cross section A and Young’s
modulus E, fixed at one end and subjected to a force P at the other. Use the principle
of virtual work to show that the displacement at the loaded end is u = PL/EA.

2. Consider a uniaxial bar of length L, cross sectional area A and Young’s modulus E.
What factor of EAL is the strain energy when the displacements in the bar are

u =107 x, with X measured from one end of the bar? What is the internal virtual

work for a virtual displacement du =10"x? For a constant virtual displacement
along the bar?

3. A rigid bar rests upon three columns, a central column with Young’s modulus
100GPa and two equidistant outer columns with Young’s moduli 200GPa. The

columns are of equal length 1m and cross-sectional area lcm”. The rigid bar is
subjected to a downward force of 10kN . Use the principle of virtual work to evaluate
the vertical displacement downward of the rigid bar.

4. Re-solve problem 3 from §8.2.6 using the principle of virtual displacements.
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8.6 The Principle of Minimum Potential Energy

The principle of minimum potential energy follows directly from the principle of
virtual work (for elastic materials).

8.6.1 The Principle of Minimum Potential Energy

Consider again the example given in the last section; in particular re-write Eqn. 8.5.15 as

5{F>uB —[M+%JUQ}=0 (8.6.1)
2L, 2L,

The quantity inside the curly brackets is defined to be the total potential energy of the
system, [T, and the equation states that the variation of IT is zero — that this quantity does
not vary when a virtual displacement is imposed:

S1=0 (8.6.2)

The total potential energy as a function of displacement u is sketched in Fig. 8.6.1. With
reference to the figure, Eqn. 8.6.2 can be interpreted as follows: the total potential energy
attains a stationary value (maximum or minimum) at the actual displacement (u,); for

example, oIl # 0 for an incorrect displacement U, . Thus the solution for displacement

can be obtained by finding a stationary value of the total potential energy. Indeed, it can
be seen that the quantity inside the curly brackets in Fig. 8.6.1 attains a minimum for the
solution already derived, Eqn. 8.5.17.

Figure 8.6.1: the total potential energy of a system

To generalise, define the “potential energy” of the applied loads to be oV =—-0W,_,, so that

ext

S =8U + &V (8.6.3)

The external loads must be conservative, precluding for example any sliding frictional
loading. Taking the total potential energy to be a function of displacement u, one has

dlT(u)
du

éH:

=0 (8.6.4)
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Thus of all possible displacements U satisfying the loading and boundary conditions, the
actual displacement is that which gives rise to a stationary point dI1/du =0 and the
problem reduces to finding a stationary value of the total potential energy IT=U +V .

Stability
To be precise, Eqn. 8.6.2 only demands that the total potential energy has a stationary
point, and in that sense it is called the principle of stationary potential energy. One can

have a number of stationary points as sketched in Fig. 8.6.2. The true displacement is one
of the stationary values u,,u,,u,.

IT

U, u, U,

Figure 8.6.2: the total potential energy of a system

Consider the system with displacement u,. If an external force acts to give the particles
of the system some small initial velocity and hence kinetic energy, one has 0 = AIT+ AK..
The particles will now move and so the displacement U, changes. Since IT is a
minimum there it must increase and so the kinetic energy must decrease, and so the
particles remain close to the equilibrium position. For this reason u, is defined as a
stable equilibrium point of the system. If on the other hand the particles of the body were
given small initial velocities from an initial displacement U, or u,, the kinetic energy

would increase dramatically; these points are called unstable equilibrium points. Only
the state of stable equilibrium is of interest here and the principle of stationary potential
energy in this case becomes the principle of minimum potential energy.

8.6.2 The Rayleigh-Ritz Method

In applications, the principle of minimum potential energy is used to obtain approximate
solutions to problems which are otherwise difficult or, more usually, impossible to solve
exactly. It forms one basis of the Finite Element Method (FEM), a general technique
for solving systems of equations which arise in complex mechanics problems.

Example

Consider a uniaxial bar of length L, young’s modulus E and varying cross-section
A=A (1+x/L), fixed at one end and subjected to a force F at the other. The true
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solution for displacement to this problem can be shown to be u = (FL/EA, )In(1+ x/L).
To see how this might be approximated using the principle, one writes

15 (du)’
IH=U+V =—|EA — | dx—-Fu 8.6.5
2I (de |X=L ( )

0

First, substituting in the exact solution leads to

L 2 2
H:ﬂj(nx/l_)i ! dx—F oo m2FL (8.6.6)
2 9 EA, 1+x/L EA, 2 EA,

According to the principle, any other displacement solution (which satisfies the
displacement boundary condition u(0) = 0) will lead to a greater potential energy IT.

Suppose now that the solution was unknown. In that case an estimate of the solution can
be made in terms of some unknown parameter(s), substituted into Eqn. 8.6.5, and then
minimised to find the parameters. This procedure is known as the Rayleigh Ritz
method. For example, let the guess, or trial function, be the linear function U = & + fX.

The boundary condition leads to & = 0. Substituting U = /X into Eqn. 8.6.5 leads to
1 ; 3
H:EEAO/?Z'[(1+X/L)dX—FﬂL:ZEAOL,BZ—F/B’L (8.6.7)
0

The principle states that oIl = (dH / dﬂ)éﬂ =0, so that

a3 2F 2Fx
~  —ZEALB-FL=0 = u= 8.6.8
ap =2 =P 3EA, - 3EA (8:68)

The exact and approximate Ritz solution are plotted in Fig. 8.6.3.

0.7
0.6
FL s exact
EA, o4
03 approximate
0.2
0.1
0 0.2 0.4 0.6 0.8 1
x/L

Figure 8.6.3: exact and (Ritz) approximate solution for axial problem
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The total potential energy due to this approximate solution 2Fx/3EA, is, from Eqn.
8.6.5,

2
1= _LFL (8.6.9)
3 EA,
which is indeed greater than the minimum value Eqn. 8.6.6 (~ —0.347F*L/EA,).
n

The accuracy of the solution 8.6.9 can be improved by using as the trial function a
quadratic instead of a linear one, say U = a + fX + yX°. Again the boundary condition

leadsto & =0. Then u = £+ yx° and there are now two unknowns to determine. Since
IT is a function of two variables,

él_l(ﬂ,y):z—l;é‘ﬂ—i-g—l;[é}/:O (8.6.10)

and the two unknowns can be obtained from the two conditions

oan_, o _

— =0, —=0 (8.6.11)
op 0y

Example

A beam of length L and constant Young’s modulus E and moment of inertia | is supported
at its ends and subjected to a uniform distributed force per length f. Let the beam undergo
deflection v(X). The potential energy of the applied loads is

V=- j fu(x)dx (8.6.12)

and, with Eqn. 8.5.19, the total potential energy is

L/ 42.,\? L
m-E d;’ dx — f [ valx (8.6.13)
2 o ldx 0

Choose a quadratic trial function V = & + X + y%>. The boundary conditions lead to
V= X(X—L). Substituting into 8.6.13 leads to

IT=2y"EIL— L3 /6 (8.6.14)

With oI = (dI1/dy)dy = 0, one finds that
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ik fL’ flL* ,
= V(X) =— X+ X 8.6.15
YT TR YT (8:6.13)

which compares with the exact solution
3
V(X) = — fL X+ L X’ —Lx4 (8.6.16)
24El 12El 24El

n

8.6.3 Problems

1.

Consider the statically indeterminate uniaxial problem shown below, two bars joined
at X=1L,builtinat x =0 and X = 2L, and subjected to a force F at the join. The
cross-sectional area of the bar on the left is 2A and that on the right is A. Use the
principle of minimum potential energy in conjunction with the Rayleigh-Ritz method
with a trial displacement function of the form U = & + X + X to approximate the

exact displacement and in particular the displacement at X = L.

L L

A beam of length L and constant Young’s modulus E and moment of inertia | is
supported at its ends and subjected to a uniform distributed force per length f and a
concentrated force P at its centre. Use the principle of minimum potential energy in
conjunction with the Rayleigh-Ritz method with a trial deflection v = & Sil’l(ﬂX/ L), to

approximate the exact deflection.

. Use the principle of minimum potential energy in conjunction with the Rayleigh-Ritz

method with a trial solution U = aX to approximately solve the problem of axial
deformation of an elastic rod of varying cross section, built in at one end and loaded
by a uniform distributed force/length f, and a force P at the free end, as shown below.
The cross sectional are is A(X) = A,(2 —X/L) and the length of the rod is L.
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