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8.5 Virtual Work 
 
Consider a mass attached to a spring and pulled by an applied force aplF , Fig. 8.5.1a.  

When the mass is in equilibrium, 0 aplspr FF , where kxFspr   is the spring force 

with x  the distance from the spring reference position. 
 

 
 
Figure 8.5.1: a force extending an elastic spring; (a) block in equilibrium, (b) block 

not at its equilibrium position 
 
In order to develop a number of powerful techniques based on a concept known as 
virtual work, imagine that the mass is not in fact at its equilibrium position but at an 
(incorrect) non-equilibrium position xx  , Fig. 8.5.1b.  The imaginary displacement x  
is called a virtual displacement.  Define the virtual work W  done by a force to be the 
equilibrium force times this small imaginary displacement x .  It should be emphasized 
that virtual work is not real work – no work has been performed since x  is not a real 
displacement which has taken place; this is more like a “thought experiment”.  The virtual 
work of the spring force is then xkxxFW sprspr   .  The virtual work of the applied 

force is xFW aplapl   .  The total virtual work is  

 
  xFkxWWW aplaplspr           (8.5.1) 

 
There are two ways of viewing this expression.  First, if the system is in equilibrium 
( 0 aplFkx ) then the virtual work is zero, 0W .  Alternatively, if the virtual work 

is zero then, since x  is arbitrary, the system must be in equilibrium.  Thus the virtual 
work idea gives one an alternative means of determining whether a system is in 
equilibrium. 
 
The symbol   is called a variation so that, for example, x  is a variation in the 
displacement (from equilibrium). 
 
Virtual work is explored further in the following section. 
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8.5.1 Principle of Virtual Work: a single particle 
 
A particle of mass m is acted upon by a number of forces, Nfff ,,, 21  , Fig. 8.5.2.  

Suppose the particle undergoes a virtual displacement u ; to reiterate, these impressed 
forces if  do not cause the particle to move, one imagines it to be incorrectly positioned a 

little away from the true equilibrium position. 
 

 
 

Figure 8.5.2: a particle in equilibrium under the action of a number of forces 
 
If the particle is moving with an acceleration a, the quantity am  is treated as an inertial 
force.  The total virtual work is then (each term here is the dot product of two vectors) 
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Now if the particle is in equilibrium by the action of the effective (impressed plus inertial) 
force, then 
 

0W          (8.5.3) 
 
This can be expressed as follows: 
 
The principle of virtual work (or principle of virtual displacements) I: 
if a particle is in equilibrium under the action of a number of forces (including the inertial 
force) the total work done by the forces for a virtual displacement is zero 
 
Alternatively, one can define the external virtual work   uf  iWext  and the virtual 

kinetic energy ua   mK  in which case the principle takes the form KW  ext  

(compare with the work-energy principle, Eqn. 8.1.10). 
 
In the above, the principle of virtual work was derived using Newton’s second law.   One 
could just as well regard the principle of virtual work as the fundamental principle and 
from it derive the conditions for equilibrium.  In this case one can say that1  
 
 
 

                                                 
1 note the word any here: this must hold for all possible virtual displacements, for it will always be possible 

to find one virtual displacement which is perpendicular to the resultant of the forces, so that   0 uf   

even though   f  is not necessarily zero 
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The principle of virtual work (or principle of virtual displacements) II: 
a particle is in equilibrium under the action of a system of forces (including the inertial 
force) if the total work done by the forces is zero for any virtual displacement of the 
particle 
 
Constraints 
 
In many practical problems, the particle will usually be constrained to move in only 
certain directions.  For example consider a ball rolling over a table, Fig. 8.5.3.  If the ball 
is in equilibrium then all the forces sum to zero, m  R f a 0 , where one 

distinguishes between the non-reaction forces if  and the reaction force R.  If the virtual 

displacement u  is such that the constraint is not violated, that is the ball is not allowed 
to go “through” the table, then u  and R are perpendicular, the virtual work done by the 
reaction force is zero and    0  uaf  mW .  This is one of the benefits of the 

principle of virtual work; one does not need to calculate the forces of constraint R in 
order to determine the forces if  which maintain the particle in equilibrium. 

 

 
 

Figure 8.5.3: a particle constrained to move over a surface 
 
The term kinematically admissible displacement is used to mean one that does not 
violate the constraints, and hence one arrives at the version of the principle which is often 
used in practice: 
 
The principle of virtual work (or principle of virtual displacements) III: 
a particle is in equilibrium under the action of a system of forces (including the inertial 
force) if the total work done by the forces (excluding reaction forces) is zero for any 
kinematically admissible virtual displacement of the particle 
 
Whether one uses a kinematically admissible virtual displacement and so disregard 
reaction forces, or permit a virtual displacement that violates the constraint conditions 
will usually depend on the problem at hand.  In this next example, use is made of a 
kinematically inadmissible virtual displacement. 
 
Example  
 
Consider a rigid bar of length L supported at its ends and loaded by a force F a distance a 
from the left hand end, Fig. 8.5.3a.  Reaction forces CA RR ,  act at the ends.  Let point C 

undergo a virtual displacement u .  From similar triangles, the displacement at B is 
uLa )/( .  End A does not move and so no virtual work is performed there.  The total 

virtual work is 
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u
L

a
FuRW C            (8.5.4) 

 
Note the minus sign here – the displacement at B is in a direction opposite to that of the 
action of the load and hence the work is negative.  The beam is in equilibrium when 

0W  and hence LaFRC / . 

 

 
 
Figure 8.5.3: a loaded rigid bar; (a) bar geometry, (b) a virtual displacement at end 

C 
■ 

 
 
8.5.2 Principle of Virtual Work: deformable bodies 
 
A deformable body can be imagined to undergo virtual displacements (not necessarily the 
same throughout the body).  Virtual work is done by the externally applied forces – 
external virtual work – and by the internal forces – internal virtual work.  Looking 
again at the spring problem of Fig. 8.5.1, the external virtual work is xFW aplext    and, 

considering the spring force to be an “internal” force, the internal virtual work is 
xkxW  int .  This latter virtual work can be re-written as UW  int  where U  is 

the virtual potential energy change which occurs when the spring is moved a distance x  
(keeping the spring force constant). 
 
In the same way, the internal virtual work of an elastic body is the (negative of the) 
virtual strain energy and the principle of virtual work can be expressed as 
 

UWext    Principle of Virtual Work for an Elastic Body   (8.5.4) 

 
The principle can be extended to accommodate dissipation (energy loss), but only elastic 
materials will be examined here. 
 
The virtual strain energy for a uniaxial rod is derived next. 
 
 
8.5.3 Virtual Strain Energy for a Uniaxially Loaded Bar 
 
In what follows, to distinguish between the strain energy and the displacement, the former 
will now be denoted by w and the latter by u. 
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Consider a uniaxial bar which undergoes strains  .  The strain is the unit change in 
length and, considering an element of length dx , Fig. 8.5.4a, the strain is 
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in the limit as 0x .  With ddw  , the strain energy density is 
 

2
2

2

1

2

1

2

1








dx

du
EEw               (8.5.6) 

 
and the strain energy is  
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This is the actual strain energy change when the bar undergoes actual strains  .  For the 
simple case of constant A and L and constant strain Ldxdu //   where   is the 
elongation of the bar, Eqn. 8.5.7 reduces to LAEU 2/2  (equivalent to Eqn. 8.2.2). 
 

 
 

Figure 8.5.4: element undergoing actual and virtual displacements; (a) actual 
displacements, (b) virtual displacements 

 
It will now be shown that the internal virtual work done as material particles undergo 
virtual displacements u  is given by U , with U given by Eqn. 8.5.7. 
 
Consider an element to “undergo” virtual displacements u , Fig. 8.5.4b, which are, by 
definition, measured from the actual displacements.  The virtual displacements give rise 
to virtual strains: 
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again in the limit as 0x . Since  dxdu /  , it follows that 
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In other words, the variation of the derivative is equal to the derivative of the variation2. 
 
One other result is needed before calculating the internal virtual work.  Consider a 
function of the displacement, )(uf .  The variation of f when u undergoes a virtual 
displacement is, by definition, 
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now in the limit as the virtual displacement 0u .  From this one can write 
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The stress   applied to the surface of the element under consideration is an “external 
force”.  The internal force is the equal and opposite stress on the other side of the surface 
inside the element.  The internal virtual work (per unit volume) is then  W .  
Since   is the actual stress, unaffected by the virtual straining, 
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since the Young’s modulus is unaffected by any virtual displacement.  The total work 
done is then 
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which, comparing with Eqn. 8.5.7, is the desired result, UW  int . 

 
Example 
 
Two rods with cross sectional areas 21 , AA , lengths 21 , LL  and Young’s moduli 21 , EE  
and joined together with the other ends fixed, as shown in Fig. 8.5.5.  The rods are 
subjected to a force P where they meet.  As the rods elongate/contract, the strain is simply 

LuB / , where Bu  is the displacement of the point at which the force is applied.  The 
total elastic strain energy is, from Eqn. 8.5.7, 
 

                                                 
2 this holds in general for any function; manipulations with variations form a part of a branch of 
mathematics known as the Calculus of Variations, which is concerned in the main with minima/maxima 
problems 
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Introduce now a virtual displacement Bu  at B.  The external virtual work is 

BuPW  ext .  The principle of virtual work, Eqn. 8.5.4, states that 
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Figure 8.8.5: two rods subjected to a force P 
 
From relation 8.5.10,  
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The virtual displacement Bu  is arbitrary and so can be cancelled out, giving the result 
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from which the strains and hence stresses can be evaluated.  Note that the reaction forces 
were not involved in this solution method. 

■ 
 
 
8.5.4 Virtual Strain Energy for a Beam 
 
The strain energy in a beam is given by Eqn. 8.2.7, viz. 
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Using the moment-curvature relation 7.4.37,  22 / dxvdEIM  , where v is the deflection 
of the beam, 
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and the virtual strain energy is  
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It is not easy to analyse problems using this expression and the principle of virtual work 
directly, but this expression will be used in the next section in conjunction with the 
related principle of minimum potential energy. 
 
 
8.5.5 Problems 
 
1. Consider a uniaxial bar of length L with constant cross section A and Young’s 

modulus E, fixed at one end and subjected to a force P at the other.  Use the principle 
of virtual work to show that the displacement at the loaded end is EAPLu / . 

 
2. Consider a uniaxial bar of length L, cross sectional area A and Young’s modulus E.  

What factor of EAL is the strain energy when the displacements in the bar are 
xu 310 , with x measured from one end of the bar?  What is the internal virtual 

work for a virtual displacement xu 510 ?  For a constant virtual displacement 
along the bar? 

 
3. A rigid bar rests upon three columns, a central column with Young’s modulus  

GPa100  and two equidistant outer columns with Young’s moduli  GPa200 .  The 
columns are of equal length 1m and cross-sectional area 2cm1 .  The rigid bar is 
subjected to a downward force of kN10 .  Use the principle of virtual work to evaluate 
the vertical displacement downward of the rigid bar. 

 
4. Re-solve problem 3 from §8.2.6 using the principle of virtual displacements. 
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8.6 The Principle of Minimum Potential Energy 
 
The principle of minimum potential energy follows directly from the principle of 
virtual work (for elastic materials). 
 
 
8.6.1 The Principle of Minimum Potential Energy 
 
Consider again the example given in the last section; in particular re-write Eqn. 8.5.15 as 

 

0
22

2

2

22

1

11 
















 BB u

L

AE

L

AE
Pu                   (8.6.1) 

 
The quantity inside the curly brackets is defined to be the total potential energy of the 
system,  , and the equation states that the variation of   is zero – that this quantity does 
not vary when a virtual displacement is imposed: 
 

0         (8.6.2) 
 
The total potential energy as a function of displacement u is sketched in Fig. 8.6.1.  With 
reference to the figure, Eqn. 8.6.2 can be interpreted as follows: the total potential energy 
attains a stationary value (maximum or minimum) at the actual displacement ( 1u ); for 

example, 0  for an incorrect displacement 2u .  Thus the solution for displacement 
can be obtained by finding a stationary value of the total potential energy.  Indeed, it can 
be seen that the quantity inside the curly brackets in Fig. 8.6.1 attains a minimum for the 
solution already derived, Eqn. 8.5.17. 
 

 
 

Figure 8.6.1: the total potential energy of a system 
 
To generalise, define the “potential energy” of the applied loads to be extWV    so that 

 
VU         (8.6.3) 

 
The external loads must be conservative, precluding for example any sliding frictional 
loading.  Taking the total potential energy to be a function of displacement u, one has 
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Thus of all possible displacements u satisfying the loading and boundary conditions, the 
actual displacement is that which gives rise to a stationary point 0/  dud  and the 
problem reduces to finding a stationary value of the total potential energy VU  . 
 
Stability 
 
To be precise, Eqn. 8.6.2 only demands that the total potential energy has a stationary 
point, and in that sense it is called the principle of stationary potential energy.  One can 
have a number of stationary points as sketched in Fig. 8.6.2.  The true displacement is one 
of the stationary values 321 ,, uuu . 

 

 
 

Figure 8.6.2: the total potential energy of a system 
 
Consider the system with displacement 2u .  If an external force acts to give the particles 
of the system some small initial velocity and hence kinetic energy, one has K0 .  
The particles will now move and so the displacement 2u  changes.  Since   is a 
minimum there it must increase and so the kinetic energy must decrease, and so the 
particles remain close to the equilibrium position.  For this reason 2u  is defined as a 
stable equilibrium point of the system.  If on the other hand the particles of the body were 
given small initial velocities from an initial displacement 1u  or 3u , the kinetic energy 

would increase dramatically; these points are called unstable equilibrium points.  Only 
the state of stable equilibrium is of interest here and the principle of stationary potential 
energy in this case becomes the principle of minimum potential energy. 
 
 
8.6.2 The Rayleigh-Ritz Method 
 
In applications, the principle of minimum potential energy is used to obtain approximate 
solutions to problems which are otherwise difficult or, more usually, impossible to solve 
exactly.  It forms one basis of the Finite Element Method (FEM), a general technique 
for solving systems of equations which arise in complex mechanics problems. 
 
Example 
 
Consider a uniaxial bar of length L, young’s modulus E and varying cross-section  

)/1(0 LxAA  , fixed at one end and subjected to a force F at the other.  The true 


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solution for displacement to this problem can be shown to be    LxEAFLu /1ln/ 0  .  

To see how this might be approximated using the principle, one writes 
 

Lx

L

uFdx
dx

du
EAVU









 

2

02

1
                  (8.6.5) 

 
First, substituting in the exact solution leads to  
 

0

2

0

2

00

0

2

2ln
2ln

/1

1
)/1(

2 EA

LF

EA

FL
Fdx

LxEA

F
Lx

EA L











        (8.6.6) 

 
According to the principle, any other displacement solution (which satisfies the 
displacement boundary condition 0)0( u ) will lead to a greater potential energy  . 
 
Suppose now that the solution was unknown.  In that case an estimate of the solution can 
be made in terms of some unknown parameter(s), substituted into Eqn. 8.6.5, and then 
minimised to find the parameters.  This procedure is known as the Rayleigh Ritz 
method.  For example, let the guess, or trial function, be the linear function xu   .  
The boundary condition leads to 0 .  Substituting xu   into Eqn. 8.6.5 leads to  
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The principle states that   0/   dd , so that  
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The exact and approximate Ritz solution are plotted in Fig. 8.6.3. 
 

 
 

Figure 8.6.3: exact and (Ritz) approximate solution for axial problem 
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The total potential energy due to this approximate solution 03/2 EAFx  is, from Eqn. 

8.6.5,  
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which is indeed greater than the minimum value Eqn. 8.6.6 ( 0

2 /347.0 EALF ). 

■ 
 
The accuracy of the solution 8.6.9 can be improved by using as the trial function a 
quadratic instead of a linear one, say 2xxu   .  Again the boundary condition 

leads to 0 .  Then 2xxu    and there are now two unknowns to determine.  Since 
  is a function of two variables,  
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and the two unknowns can be obtained from the two conditions 
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Example 
 
A beam of length L and constant Young’s modulus E and moment of inertia I is supported 
at its ends and subjected to a uniform distributed force per length f.  Let the beam undergo 
deflection )(xv .  The potential energy of the applied loads is 
 

dxxfvV
L


0

)(        (8.6.12) 

 
 and, with Eqn. 8.5.19, the total potential energy is 
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Choose a quadratic trial function 2xxv   .  The boundary conditions lead to  

)( Lxxv   .  Substituting into 8.6.13 leads to 
 

6/2 32 LfEIL                                      (8.6.14) 
 
With   0/   dd , one finds that 
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which compares with the exact solution 
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■ 
 
 
8.6.3 Problems 
 
1. Consider the statically indeterminate uniaxial problem shown below, two bars joined 

at Lx  , built in at 0x  and Lx 2 , and subjected to a force F at the join.  The 
cross-sectional area of the bar on the left is 2A and that on the right is A.  Use the 
principle of minimum potential energy in conjunction with the Rayleigh-Ritz method 
with a trial displacement function of the form 2xxu    to approximate the 
exact displacement and in particular the displacement at Lx  . 

 

 
 
2. A beam of length L and constant Young’s modulus E and moment of inertia I is 

supported at its ends and subjected to a uniform distributed force per length f and a 
concentrated force P at its centre.  Use the principle of minimum potential energy in 
conjunction with the Rayleigh-Ritz method with a trial deflection  Lxv /sin  , to 
approximate the exact deflection. 

 
3. Use the principle of minimum potential energy in conjunction with the Rayleigh-Ritz 

method with a trial solution xu   to approximately solve the problem of axial 
deformation of an elastic rod of varying cross section, built in at one end and loaded 
by a uniform distributed force/length f, and a force P at the free end, as shown below.  
The cross sectional are is )/2()( 0 LxAxA   and the length of the rod is L. 
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