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8.2.4 Castigliano’s Second Theorem

The work-energy method is the simplest of energy methods. A more powerful method is
that based on Castigliano’s second theorem, which can be used to solve problems
involving linear elastic materials. As an introduction to Castigliano’s second theorem,
consider the case of uniaxial tension, where U = P>L/2EA. The displacement through
which the force moves can be obtained by a differentiation of this expression with respect
to that force,

dU _PL_,

LA (8.2.24)
dP ~ EA
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Similarly, for torsion of a circular bar, U = T>L/2GJ , and a differentiation gives
dU /dT =TL/GJ = ¢ . Further, for bending of a beam it is also seen that dU /dM =6 .

These are examples of Castigliano’s theorem, which states that, provided the body is in
equilibrium, the derivative of the strain energy with respect to the force gives the
displacement corresponding to that force, in the direction of that force. When there is
more than one force applied, then one takes the partial derivative. For example, if n
independent forces P, P,,..., P, act on a body, the displacement corresponding to the ith

n

force is

A =Y (8.2.25)
oP,
Before proving this theorem, here follow some examples.

Example

The beam shown in Fig. 8.2.11 is pinned at A, simply supported half-way along the beam
at B and loaded at the end C by a force P and a moment M .

L 1P
Al lc ) M,
A 50O

_ _
<

L/2 L/2

Figure 8.2.11: a beam subjected to a force and moment at C
The moment along the beam can be calculated from force and moment equilibrium,
—Px—-2M x/L, O<x<L/2

M = (8.2.26)
~M,-P(L-x), L/2<x<L

The strain energy stored in the bar (due to the flexural stresses only) is

1 M 2L/2 L
U= (P+ 0] Ixzdx+ (M, + P(L—x))dx
2E1 L3 1 (8.2.27)
_pPr . 5PM L’ N ML
24EI  24EI  3EI

In order to apply Castigliano’s theorem, the strain energy is considered to be a function of
the two external loads, U = U(P,M, ). The displacement associated with the force P is

then
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oU PL* 5M,L
—= +

= = 8.2.28
© 6P 12EI 24EI ( )
The rotation associated with the moment is
2 2M. L
= U _SPL | M, (8.2.29)
oM, 24EI  3EI
]

Example
Consider next the beam of length L shown in Fig. 8.2.12, built in at both ends and loaded

centrally by a force P. This is a statically indeterminate problem. In this case, the strain
energy can be written as a function of the applied load and one of the unknown reactions.

1P
MA<A| C
B

L/2 L/2

Figure 8.2.12: a statically indeterminate beam

First, the moment in the beam is found from equilibrium considerations to be
P
M:MA+5x, O<x<L/2 (8.2.30)

where M , is the unknown reaction at the left-hand end. Then the strain energy in the
left-hand half of the beam is

L/2 2 273 2 2
PM, L ML

T 1M, L a2 P M (8.2.31)
2EI 4 2 192E1  16El ~ 4EI

The strain energy in the complete beam is double this:

P’ PM, I’ ML
+

- + (8.2.32)
96EI  SEI  2EI

Writing the strain energy as U =U (P,M 4 ), the rotation at A is

* ML
g, -V _PL M, (8.2.33)
oM, 8EI EI
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But 8, =0 and so Eqn. 8.2.33 can be solved to get M , =—PL/8. Then the
displacement at the centre of the beam is

_ou _ PU +MAL2 P
oP 48El  8EI  192EI

(8.2.34)

B

This is positive in the direction in which the associated force is acting, and so is
downward.

Proof of Castigliano’s Theorem

A proof of Castiligliano’s theorem will be given here for a structure subjected to a single
load. The load P produces a displacement A and the strain energy is U = PA/2, Fig.

8.2.13. If an additional force dP is applied giving an additional deformation dA, the
additional strain energy is

dU = PdA + %deA (8.2.35)

If the load P+ dP is applied from zero in one step, the work done is (P + dP)(A + dA)/ 2.

Equating this to the strain energy U +dU given by Eqn. 8.2.35 then gives PdA = AdP .
Substituting into Eqn. 8.2.35 leads to

dU = AdP+%deA (8.2.36)

Dividing through by dP and taking the limit as dA — 0 results in Castigliano’s second
theorem, dU /dP =A.

P+dP|----mmmeeeee o

A A+dA

Figure 8.2.13: force-displacement curve
In fact, dividing Eqn. 8.2.35 through by dA and taking the limit as dA — 0 results in

Castigliano’s first theorem, dU /dA = P . It will be shown later that this first theorem,
unlike the second, in fact holds also for the case when the elastic material is non-linear.
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