Section 8.1

8.1 Energy in Deforming Materials

There are many different types of energy: mechanical, chemical, nuclear, electrical,
magnetic, etc. Energies can be grouped into Kinetic energies (which are due to
movement) and potential energies (which are stored energies — energy that a piece of
matter has because of its position or because of the arrangement of its parts).

A rubber ball held at some height above the ground has (gravitational) potential energy.
When dropped, this energy is progressively converted into kinetic energy as the ball’s
speed increases until it reaches the ground where all its energy is kinetic. When the ball
hits the ground it begins to deform elastically and, in so doing, the kinetic energy is
progressively converted into elastic strain energy, which is stored inside the ball. This
elastic energy is due to the re-arrangement of molecules in the ball — one can imagine this
to be very like numerous springs being compressed inside the ball. The ball reaches
maximum deformation when the kinetic energy has been completely converted into strain
energy. The strain energy is then converted back into kinetic energy, “pushing” the ball
back up for the rebound.

Elastic strain energy is a potential energy — elastically deforming a material is in many
ways similar to raising a weight off the ground; in both cases the potential energy is
increased.

Similarly, work is done in stretching a rubber band. This work is converted into elastic
strain energy within the rubber. If the applied stretching force is then slowly reduced, the
rubber band will use this energy to “pull” back. If the rubber band is stretched and then
released suddenly, the band will retract quickly; the strain energy in this case is converted
into kinetic energy — and sound energy (the “snap”).

When a small weight is placed on a large metal slab, the slab will undergo minute strains,
too small to be noticed visually. Nevertheless, the metal behaves like the rubber ball and
when the weight is removed the slab uses the internally stored strain energy to return to
its initial state. On the other hand, a metal bar which is bent considerably, and then laid
upon the ground, will not nearly recover its original un-bent shape. It has undergone
permanent deformation. Most of the energy supplied has been lost; it has been converted
into heat energy, which results in a very slight temperature rise in the bar. Permanent
deformations of this type are accounted for by plasticity theory, which is treated in
Chapter 11.

In any real material undergoing deformation, at least some of the supplied energy will be
converted into heat. However, with the ideal elastic material under study in this chapter,
it is assumed that all the energy supplied is converted into strain energy. When the loads
are removed, the material returns to its precise initial shape and there is no energy loss;
for example, a purely elastic ball dropped onto a purely elastic surface would bounce
back up to the precise height from which it was released.

As a prelude to a discussion of the energy of elastic materials, some important concepts
from elementary particle mechanics are reviewed in the following sections. It is shown
that Newton’s second law, the principle of work and kinetic energy and the principle
of conservation of mechanical energy are equivalent statements; each can be derived
from the other. These concepts are then used to study the energetics of elastic materials.
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8.1.1 Work and Energy in Particle Mechanics
Work

Consider a force F which acts on a particle, causing it to move through a displacement s,
the directions in which they act being represented by the arrows in Fig. 8.1.1a. The work
W done by F is defined to be Fscos@ where @ is the angle formed by positioning the
start of the F and s arrows at the same location with 0 <& <180. Work can be positive
or negative: when the force and displacement are in the same direction, then 0 <8 <90
and the work done is positive; when the force and displacement are in opposite directions,
then 90 <0 <180 and the work done is negative.

\9‘
F S ds

P
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Figure 8.1.1: (a) force acting on a particle, which moves through a displacement s;
(b) a varying force moving a particle along a path

Consider next a particle moving along a certain path between the points p,, p, by the
action of some force F, Fig. 8.1.1b. The work done is

[
W:chosads (8.1.1)

Py

where s is the displacement. For motion along a straight line, so that 8 = 0, the work is
W =["Fds ; if F here is constant then the work is simply F times the distance between
Py
p, to p, but, in most applications, the force will vary and an integral needs to be

evaluated.
Conservative Forces

From Eqn. 8.1.1, the work done by a force in moving a particle through a displacement
will in general depend on the path taken. There are many important practical cases,
however, when the work is independent of the path taken, and simply depends on the
initial and final positions, for example the work done in deforming elastic materials (see
later) — these lead to the notion of a conservative (or potential) force. Looking at the
one-dimensional case, a conservative force F__ is one which can always be written as the

con

derivative of a function U (the minus sign will become clearer in what follows),
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du
=T 8.1.2
con dX ( )
since, in that case,
P p, dU P,
W = IF dx :_I—dx - _jdu =—(U(p,)-U(p,))=-AU (8.1.3)
P P dX Py

In this context, the function U is called the potential energy and AU is the change in
potential energy of the particle as it moves from p, to p,. If the particle is moved from

p, to p, and then back to p,, the net work done is zero and the potential energy U of the
particle is that with which it started.

Potential Energy

The potential energy of a particle/system can be defined as follows:

Potential Energy:
the work done in moving a system from some standard configuration to the current
configuration

Potential energy has the following characteristics:

(1) The existence of a force field

(2) To move something in the force field, work must be done

(3) The force field is conservative

(4) There is some reference configuration

(5) The force field itself does negative work when another force is moving something
against it

(6) It is recoverable energy

These six features are evident in the following example: a body attached to the coil of a

spring is extended slowly by a force F, overcoming the spring (restoring) force F_, (so

that there are no accelerations and F =—F_ at all times), Fig. 8.1.2.

—

Fo. X' F

Figure 8.1.2: a force extending an elastic spring

Let the initial position of the block be X, (relative to the reference configuration, X =0).

Assuming the force to be proportional to deflection, F =kx, the work done by F in
extending the spring to a distance X is
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W = dex: J'kxdx=%kx2 — 1k =U(x)—U(x,) = AU (8.1.4)

Xo Xo

This is the work done to move something in the elastic spring “force field” and by
definition is the potential energy (change in the body). The energy supplied in moving
the body is said to be recoverable because the spring is ready to pull back and do the
same amount of work.

The corresponding work done by the conservative spring force F, is

1k¢? )= —AU (8.1.5)

2

W, = —JX' Fdx = —(% kx? —

Xy

This work can be seen from the area of the triangles in Fig. 8.1.3: the spring force is zero
at the equilibrium/reference position ( X = 0) and increases linearly as X increases.

Figure 8.1.3: force-extension curve for a spring
|

The forces in this example depend on the amount by which the spring is stretched. This is
similar to the potential energy stored in materials — the potential force will depend in
some way on the separation between material particles (see below).

Also, from the example, it can be seen that an alternative definition for the potential
energy U of a system is the negative of the work done by a conservative force in moving
the system from some standard configuration to the current configuration.

In general then, the work done by a conservative force is related to the potential energy
through
W_, =-AU (8.1.6)

con
Dissipative (Non-Conservative) Forces

When the forces are not conservative, that is, they are dissipative, one cannot find a
universal function U such that the work done is the difference between the values of U at
the beginning and end points — one has to consider the path taken by the particle and the
work done will be different in each case. A general feature of non-conservative forces is
that if one moves a particle and then returns it to its original position the net work done
will not be zero. For example, consider a block being dragged across a rough surface,
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Fig. 8.1.4. In this case, if the block slides over and back a number of times, the work
done by the pulling force F keeps increasing, and the work done is not simply determined
by the final position of the block, but by its complete path history. The energy used up in
moving the block is dissipated as heat (the energy is irrecoverable).

_»F

<
<

Fy

r

Figure 8.1.4: Dragging a block over a frictional surface

8.1.2 The Principle of Work and Kinetic Energy

In general, a mechanics problem can be solved using either Newton’s second law or the
principle of work and energy (which is discussed here). These are two different equations
which basically say the same thing, but one might be preferable to the other depending on
the problem under consideration. Whereas Newton’s second law deals with forces, the
work-energy principle casts problems in terms of energy.

The kinetic energy of a particle of mass m and velocity Vv is defined to be K = %mv2 . The
rate of change of kinetic energy is, using Newton’s second law F =ma,

d

1 dv
mv- |=mv—=(ma)v = Fv 8.1.7
dt( j ot (ma) (8.1.7)

The change in kinetic energy over a time interval (t,,t,) is then

AK =K, -K, _j—dt_ijdt (8.1.8)

where K( and K; are the initial and final kinetic energies. The work done over this time
interval is

W) X(t)
W = jdw j Fdx = j Fvdt (8.1.9)

W(ty) X(to) to

and it follows that

Work - Energy Principle (8.1.10)

One has the following:
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The principle of work and kinetic energy:
the total work done by the external forces acting on a particle equals the change in kinetic
energy of the particle

It is not a new principle of mechanics, rather a rearrangement of Newton’s second law of
motion (or one could have started with this principle, and derived Newton’s second law).

The following example shows how the principle holds for conservative, dissipative and
applied forces.

Example

A block of mass m is attached to a spring and dragged along a rough surface. Itis
dragged from left to right, Fig. 8.1.5. Three forces act on the block, the applied force F,

(taken to be constant), the spring force F_, and the friction force F

spr + (assumed constant).

spr

ps

fri

Figure 8.1.5: a block attached to a spring and dragged along a rough surface

Newton’s second law, with F_, =kx, leads to a standard non-homogeneous second order

linear ordinary differential equation with constant coefficients:

2
d X:F

2 apl
t

m ~F,. -F (8.1.11)

fri — T ospr

Taking the initial position of the block to be X, and the initial velocity to be X, , the
solution can be found to be

Fa _Fri Fa _Fri Xy .
x(t)=—2 " 41 x, ——2 " ot +—sin wt (8.1.12)
k ‘ k ®

where @ =+/k/m. The total work done W is the sum of the work done by the applied
force W, , the work done by the spring force W, and that done by the friction force

W

apl »

fri -

W =W

apl

+Wspr +Wfri = I:apl (X_ XO)_%k(Xz - X;)_ I:fri (X_ XO) (8113)

The change in kinetic energy of the block is
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AK:%m@z—%) (8.1.14)

Substituting Eqn. 8.1.12 into 8.1.13-14 and carrying out the algebra, one indeed finds that
W =AK:
W =W

+W, +Wg; =AK (8.1.15)

apl fri
Now the work done by the spring force is equivalent to the negative of the potential
energy change, so the work-energy equation (8.1.15) can be written in the alternative
form'

W_. +W

apl wi =AU, +AK (8.1.16)
The friction force is dissipative — it leads to energy loss. In fact, the work done by the
friction force is converted into heat which manifests itself as a temperature change in the
block. Denoting this energy loss by (see Eqn. 8.1.13) H,, = F,(X—X,), one has

fri

W, —H = AU, +AK (8.1.17)

apl fri

8.1.3 The Principle of Conservation of Mechanical Energy

In what follows, it is assumed that there is no energy loss, so that no dissipative forces
act. Define the total mechanical energy of a body to be the sum of the kinetic and
potential energies of the body. The work-energy principle can then be expressed in two
different ways, for this special case:

1. The total work done by the external forces acting on a body equals the change in
kinetic energy of the body:

W =W, +W,, = AK (8.1.18)

2. The total work done by the external forces acting on a body, exclusive of the
conservative forces, equals the change in the total mechanical energy of the body

W, = AU +AK (8.1.19)

The special case where there are no external forces, or where all the external forces are
conservative/potential, leads to 0 = AU + AK , so that the mechanical energy is constant.
This situation occurs, for example, for a body in free-fall { A Problem 3} and for a freely
oscillating spring { A Problem 4}. Both forms of the work-energy principle can also be
seen to apply for a spring subjected to an external force { A Problem 5}.

"it is conventional to keep work terms on the left and energy terms on the right
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The Principle of Conservation of Mechanical Energy

The principle of conservation of energy states that the total energy of a system remains
constant — energy cannot be created or destroyed, it can only be changed from one form
of energy to another.

The principle of conservation of energy in the case where there is no energy dissipation is
called the principle of conservation of mechanical energy and states that, if a system is
subject only to conservative forces, its mechanical energy remains constant; any system
in which non-conservative forces act will inevitable involve non-mechanical energy (heat
transfer).

So, when there are only conservative forces acting, one has
0=AU +AK (8.1.20)
or, equivalently,

K, +U, =K, +U, (8.1.21)

where K, K, are the initial and final kinetic energies and U, U, are the initial and final

potential energies.

Note that the principle of mechanical energy conservation is not a new separate law of
mechanics, it is merely a re-expression of the work-energy principle (or of Newton’s
second law).

8.1.4 Deforming Materials

The discussion above which concerned particle mechanics is now generalized to that of a
deforming material.

Any material consists of many molecules and particles, all interacting in some complex
way. There will be a complex system of internal forces acting between the molecules,
even when the material is in a natural (undeformed) equilibrium state. If external forces
are applied, the material will deform and the molecules will move, and hence not only
will work be done by the external forces, but work will be done by the internal forces.
The work-energy principle in this case states that the total work done by the external and
internal forces equals the change in kinetic energy,

W +W. =AK (8.1.22)

ext
In the special case where no external forces act on the system, one has

W, = AK (8.1.23)

mnt
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which is a situation known as free vibration. The case where the kinetic energy is
unchanging is

W, +W. =0 (8.1.24)

ext
and this situation is known as quasi-static (the quantities here can still depend on time).
The force interaction between the molecules can be grouped into:

(1) conservative internal force systems

(2) non-conservative internal force systems (or at least partly non-conservative)
Conservative Internal Forces
First, assuming a conservative internal force system, one can imagine that the molecules

interact with each other in the manner of elastic springs. Suppose one could apply an
external force to pull two of these molecules apart, as shown in Fig. 8.1.6.

1 1
1 I
1 1
I 1
1
external | : external

1 I
1 1

force force

internal forces

Figure 8.1.6: external force pulling two molecules/particles apart

In this ideal situation one can say that the work done by the external forces equals the
change in potential energy plus the change in kinetic energy,

W, =AU +AK (8.1.25)

The energy U in this case of deforming materials is called the elastic strain energy, the
energy due to the molecular arrangement relative to some equilibrium position.

The free vibration case is now 0 = AU + AK and the quasi-static situation is W, = AU .

Non-Conservative Internal Forces

Consider now another example of internal forces acting within materials, that of a
polymer with long-chain molecules. If one could somehow apply an external force to a
pair of these molecules, as shown in Fig. 8.1.7, the molecules would slide over each
other. Frictional forces would act between the molecules, very much like the frictional
force between the block and rough surface of Fig. 8.1.4. This is called internal friction.
Assuming that the internal forces are dissipative, the external work cannot be written in
terms of a potential energy, W_, # AU + AK , since the work done depends on the path

taken. One would have to calculate the work done by evaluating an integral.
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Figure 8.1.7: external force pulling two molecules/particles apart
Similar to Eqn. 8.1.17, however, the energy balance can be written as

W, —H = AK + AU
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sectional property 4. called the -(Zorm fackor for shear. det

fo = A& S Q™(x4)  da
AN CY) b*(y)

Skain energy due o sheay n 'bendfngr
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