
















































Continuum Models and Micromechanics 

The models mentioned in the previous section are continuum models.  What this means 
is explained in what follows. 

Stress and Scale 

In the definition of the traction vector, it was assumed that the ratio of force over area 
would reach some definite limit as the area ∆S of the surface upon which the force ∆F 
acts was shrunk to zero.  This issue can be explored further by considering Fig. 1.1.  
Assume first that the plane upon which the force acts is fairly large; it is then shrunk and 
the ratio F / S tracked.  A schematic of this ratio is shown in Fig. 1.2.  At first (to the 
right of Fig. 1.2) the ratio F / S undergoes change, assuming the stress to vary within the 
material, as it invariably will if the material is loaded in some complex way.  Eventually 
the plane will be so small that the ratio changes very little, perhaps with some small 
variability  ε.  If the plane is allowed to get too small, however, down below some 
distance h * say and down towards the atomic level, where one might encounter 
“intermolecular space”, there will be large changes in the ratio and the whole concept of a 
force acing on a single surface breaks down.  

Figure 1.1: A force acting on an internal surface; allowing the plane on which the 
force acts to get progressively smaller 

In a continuum model, it is assumed that the ratio F / S follows the dotted path shown in 
Fig. 1.2; a definite limit is reached as the plane shrinks to zero size.  It should be kept in 
mind that the traction in a real material should be evaluated through 
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where h * is some minimum dimension below which there is no acceptable limit.  On the 
other hand, it is necessary to take the limit to zero in the mathematical modelling of 
materials since that is the basis of calculus.  

Figure 1.2: the change in traction as the plane upon which a force acts is reduced in 
size 

In a continuum model, then, there is a minimum sized element one can consider, say of 
size ∆V  =(h*)3 .  When one talks about the stress on this element, the mass of this 
element, the density, velocity and acceleration of this element, one means the average of 
these quantities throughout or over the surface of the element – the discrete atomic 
structure within the element is ignored and is averaged out, or “smeared” out, into a 
continuum element. 

The continuum element is also called a representative volume element (RVE), an 
element of material large enough for the heterogeneities to be replaced by homogenised 
mean values of their properties.  The order of the dimensions of RVE’s for some 
common engineering materials would be approximately (see the metal example which 
follows) 

Metal: 0.1mm 
Polymers/composites: 1mm 
Wood: 10mm 
Concrete: 100mm 

One does not have any information about what is happening inside the continuum 
element – it is like a “black box”.  The scale of the element (and higher) is called the 
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macroscale – continuum mechanics is mechanics on the macroscale.  The scale of 
entities within the element is termed the microscale – continuum models cannot give any 
information about what happens on the microscale. 

Example: Metal 

Metal, from a distance, appears fairly uniform.  With the help of a microscope, however, 
it will be seen to consist of many individual grains of metal.  For example, the metal 
shown in Fig. 5.4.3 has grains roughly 0.05mm across, and each one has very individual 
properties (the crystals in each grain are aligned in different directions). 

Figure 1.3: metal grains 

If one is interested in the gross deformation of a moderately sized component of this 
metal, it would be sufficient to consider deformations that are averaged over volumes 
which are large compared to individual grains, but small compared to the whole 
component.  A minimum dimension of, say, h*  =0.5mmfor the metal of Fig. 1.3 would 
seem to suffice, and this would be the macro/micro-scale boundary, with a minimum 
surface area of dimension (h* )2 for the definition of stress. 

When one measures physical properties of the metal “at a point”, for example the density, 
one need only measure an average quantity over an element of the order, say, (0.5mm)3 or 
higher.  It is not necessary to consider the individual grains of metal – these are inside the 
“black box”.  The model will return valuable information about the deformation of the 
gross material, but it will not be able to furnish any information about movement of 
individual grains. 

It was shown how to evaluate the Young’s Modulus and other properties of a metal.  The 
test specimens used for such tests are vastly larger than the continuum elements discussed 
above.  Thus the test data is perfectly adequate to describe the response of the metal, on 
the macroscale. 

What if the response of individual grains to applied loads is required?  In that case a 
model would have to be constructed which accounted for the different mechanical 
properties of each grain.  The metal could no longer be considered to be a uniform 



material, but a complex one with many individual grains, each with different properties 
and orientation.  The macro/micro boundary could be set at about h*  =0.1µm .  There are 
now two problems which need to be dealt with: (1) experiments such as the tensile test 
would have to be conducted on specimens much smaller than the grain size in order to 
provide data for any mathematical model, and (2) the mathematical model will be more 
complex and difficult to solve.   

Micromechanical Models 

Consider the schematic of a continuum model shown in Fig. 1.4 below.  One can 
determine the material’s properties, such as the Young’s modulus E, through 
experimentation, and the resulting mathematical continuum model can be used to make 
predictions about the material’s response.  With the improved power of computers, 
especially since the 1990s, it has now become possible to complement continuum models 
with micromechanical models.  These models take into account more fine detail of the 
material’s structure (for example of the individual grains of the metal discussed earlier).   
Usually, one will have a micromechanical model of a small (typical) RVE of material.  
This then provides information regarding the properties of the RVE to be included in a 
continuum model (rather than having a micromechanical model of the complete material, 
which is in most cases still not practical).  The means by which the properties at the 
micro scale are averaged (for example into a “smeared out” single E value) and passed 
“up” to the continuum model is through homogenization theory.  Such micromechanical 
models can provide further insight into material behavior than the simpler continuum 
model.  

Figure 1.4: continuum model and micromechanical model 
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