Response of Real Materials

The consbitubive relahon (i-e. Hhe stress -chrain velaton) in

soltd meahanics was inbroduced in the last lecture. The

means loy which the conebtubve velahon 1z determined s

by c'arrys'na out experimenb\ tesks on the material n queshon



Experimental tests at microsale (microskucture -level)

One can do experiments at microscopic ov even atomistic

level to uvnderstand wicroskucture P'roperh'e.s aF o. mat-

—evial

— )(—ray c'rys\'a\\ocam‘:‘"'y Can be uvced Yo ‘Pmcﬂ

— Scannfn% elechon m\'cmscoP)r (SE‘M) micvoscale -l-e)c"\-u-re,

grain beuvndaries,

— Atomie %orce ™Mrycrosco
vy local interochon -Forces

|

Use qucqlfna_ toole +o Per"("o\'m microtcale simulahons

veing wmethodas such as ™MD
velate the wmicvo- sale a

meexh'es to macroscopic  &— (Melecular Danrn'iC$> %e*"”a

pvoperbes Such as Young's insights from wicro- scale

experiments
modulus P

H-owevevl such ex 'oer\‘men lkateon

IS COSH\/ , therefore, Hey ave

not done OF{-Gn \_

SEM imo.ae 4 a

titanivm all oy



Experimental teste at wmacroscale

— Tensile test R

?- Obtain lead- o\evForma’n'on gn'qioh

— Com]::ressfon test

- Sh ear test De{ermfne S}TPQS = S\'fa N Cunve

— Cyelie test L

— Other tesks Fit mathematcal madels

for consbBtubve velahions

Using the data
« Prinell hardness test L

* Thyee -point Bendfna test

. Creep test

Oblain macroscale

P"‘Operh’es cuch as

Young'b madulus} etc.



Uniaxial Tension lest

Th this test, a cylindrical doa—\oone-lype specimen s ariPPecl

and stretched, usually at some give rate of s'bre{-ch-‘na, Ire.

de  ooolfs untkil fracture. The ends of the specimen ore
at

en\araeo\ with a smooth £llet +o ensuvre no Beacture haFPens

at the gripped ends ond that no effect of the holcﬂina, Jaws

falls on the shress induced within the l‘esh‘na, leng-Hq.

dog— bone 4'_Llpe

test specimen -l-esl-\'na machine
P < measured by Porce — Pulled in the
i dynamometer
Dial gage to measure Dial gage to direchon C{‘
lateral contraction measure elongation _ .
. Cs‘mder' axl\s
A
% - E‘onaq’n‘on L2
L, .
L lateral conkoction
e g%

oare wmeasyred

-
gag<
lengH'\ [?

P — Force wequired to

hold the specimen at o %iven abrelch s noted



* The oundeformed specimen has diameter A
d, and two matevial Poinb A and B ore L — Z.\*—d
marked on it L, (gage lenjl-h) afﬂ*’i B

e The increased distance between Foinl's A and B L,

and the deformed diameter, d | are measvred by

extensometers . Dicplacement calona ax's u= L-L
P 8 : o

e The oxigl lead F Olc:l'l'n% on the specimen is yeasvred

by a Poree OQHT\QMONQ{'GV‘

The ‘Force/awt\'a'l o\\'gF)acemen’t‘ (P-— u) CUrve 13 P]oHecl

Engineevrin Matevrials

For many (hord) ena‘neerfna materials, the Force/dst

cuvve will leok same*Hm’nd ke Hhis:

Force (P)A

B
A Parallel

© ’Cﬂ/‘ / vnload

o 2 > Disp (u)
— >
Permanent deformation

afHer unload{n%



Some common observahions
v It will be found  the lovee fe Tni\'\'an\é proporHonal

o the O\fS‘D\acemen'l' as with the linear Por\-\‘on OA

2> ITf the lood has not reoched peint A, and the materdl
is then unloaded, the -Porce-d\'sPlacemen:l' curve Loil)

trace bacek a\ona the line OA down to zero Porce and

Zexo dl‘s‘: lacement

3> The loaclu‘na, cuvrve wvemains vnasﬂy linear uFl-o o cevtain

force level, called Pm]:orh'cmqﬂlﬂ imit | and elashc

Lpto é" “eo‘"b)’) elashe limit G'F the matevial (pt A).

Beyond this Poinl-, permanent deformahone are induced
Hhal 1= L pon un\oodina to zevo Horee ( from Pl— B +C)

the specimen will have o permament e[oﬂaql'\'on

4> Kbove e elaskc limit (ptA), e material hardens,
that 18 the "‘Force vectuirecl to maintain ?Ur!-her' sl-re]-ch\'n&
keeps tncreasing . (However, for materiale like soils,

they can soften)



5> The vyate (gF@@d> at which the Specimen s shetched

makes net much o\l'ﬁgerenee o the vesvlls eclbserved

(Ql‘ lecst fF the SFeed and/cn- 'l-e?mpe'rq-'iu*re is not

toe h %A-\)

6> The shkains vpto the eloshe limit are swmall, less than

0.-00Q Cor O-;ZZ)

Shkess - shain curve
There are two de-{:\'n}h'crns oF 2bress ysed

to describe the tension test:

l> Nominal shkess or Enafneerfna. shress

P Force

o =

nom N O\rfa\‘r\q\ cross- sechonal area of

[}
v .
the specimen

Sl> True shreas
Force

(smaller) current cross- sechenal

area o?— the SFecimer\

T:_E_:
A

Beoar in mind that the {orce P and ¢/s areo. A are changing

as the exper'\menl‘ progresses.



Tor small elongcr\-‘ons with the linear elashe range O~, the T2
avrec. o@ the material underaae.s nea'licailole c\nanae and both

defns o{i shress are wmore or leas equivalent

Similasly, one can describe the deformatow in two alternative

ways
L - Lo
I>' Enaineer\‘na shrain € =
Lo Both have
been defined
ovr
1 eayrher
Q> True shain G{_ = ROge (:)

L, < the oriaina\ l-enj"rh between pts A and B

L <« cuvrent length betn P*‘S A and B



The shkecg-shkain dn'auaram 'F°"' o vniaxial tension test can

now be described Lsing the hkue sb'eSS/slfcin or @nafneeriné

strese /shrain definitions.

Elashe Regime

Elaste behovioy

oceure heve

proportional limit

— ERG curve |5 )\nea'f‘ elastic [imit

v P‘l'O pvo Pc'r"h'ov\a\i 13 Tpl

limit, O

clastic
region
— Tf the stress exceeds elastic

behavior

he \5 lienit Conventional and true stress-strain diagrams
-H" € prvopoviienah {-3 'mit, for ductile material (steel) (not to scale)

the curve teads 1o bend out. This conbhues ynkil the

shess veaches +the elashe |imit

T
His limit is diﬁﬁ‘cqﬂ:‘ to

determine In exPerfmen’cs

Up until the elashe Llimit, \oaa@:‘n% and unload{ng the

sFecimen doe nat nduce any p@rmaﬂeni- skrain .



Thelasthe 'Reaime

4 true fracture stress —_\

o \/ie\din%

— A slight increase e —
_proportional limit~ 7"

—ultimate
stress fracture

/ stress

O'f ;
. elastic imit
1N ‘H"te shreas above oy Xl ield stress#
a

elashic limit causes

Permanen‘l‘ deformabon .
elastic |yielding strain necking ‘
ond the s pecimen will region hardening
elastic plastic behavior |
behavior

Not regain its ovfainql , e
Conventional and true stress-strain diagrams

2l aPe Lpon LN loadin 8’ for ductile material (steel) (not to scale)
e Yield Shreas, o, , Iis the shreses at which the material
continuee to deform without forther {ncrease in the shess

The associated o\ef'ormah'm (skeain) at yield shese (s called

plastic de]corma'h‘ovu (or plaste s}cain)

For wmost wateriale (such as ah.-nrm'num)J there ies no distinet

-),{Qld Po;n-l—. In such cases, Yyield shess o7 /Yx‘eld ot
Sy
is token to be the shkecs for o /"’ """ f
/
' . also K
st-lpu\afed pevmanent (or F“““c) called A~— line /el b
/ : .
cheain (0‘05_0,5%, U,_any 0'3%) Proo f J linear porhion
Sh’es-s l’ }

—
0-2% of?se{' skain



. S h'ain ha‘t‘d enfna o true fracture stress -

LWhen \/ie\dina, has ended,

fracture
proportional limit/ " / stress

elastic mit 2«
ield stress#

oan Increase n looad can

be SUPPmrl-ed by e Oy
matevial resuH-fna_ n a

curve that vises but

elastic |yielding strain necking ‘
becomes Fla’t’cer’ vntl it region hardening
elastic plastic behavior ‘
behavior

veoches o wmaximum
Conventional and true stress-strain diagrams

sShress called ultymate for ductile material (steel) (not to scale)

tensile Sh"engi'h (UTS)) o,

FHE A e 1}

TR AR

PRV

i

. Neckin% \:henomenaﬂ Necking

Upto the vltimate tensile slrese, as the specimen eionaa}es,
its C/s area decreases Uni#orm‘ly. But just after the
ultimate stress, the C/3 area will beain to decrease in
a loecalized region . As o vesult, o "“neak” tends +to

Lrm as the specimen e\onaaf@s firther and breaks at

S —— i

Failure

facture gtress C¢



True O— & ve Nomfnq1 (enﬂineerin8> 6= &

0

T — True o= ¢

3|

— Nowminal o= e

The difference s Pmmfneni‘
Cps

in Hthe shkain hara\enin%

¥

vpto o Practure point

The wmain cavse of the difference is due to the major

veduchon in the C/s area o?— the specimen and thevefore
the bue shess 0=_F

becomes wmuch la'rﬂer Han merminal

1122
4
shress Ofom = T't_l:l_f olurina, the sh-qin—hara!ening phase uvpho
<4
Rracture.

Youngs Medulus (e)

The SloPe 0{)- the strescs-shain cuvve over the linear

T'eal'an, 'be]to-re the P'rcPa-u-h‘onal\'l-a, limit.

E = S _ Lc'ﬂaihm‘fna\ shess
&

Lonaﬁ‘udina] shrain



Vouna's modulus has the units of shress (6-8. N/m?)

ond s A measure ofl how “s{-.“f'-{?—” a material ig.

o= EBE&e —s Tepresen"l's one- dimensional linear

elostiec constHtubve velahon

Ty k)

/\ .
Poisson’e Rathe (\)> P"ano“nced like “new

As the specimen in uniaxial tensfon test strelches, it
%ehs Hhinner in the lateval (C/3) direction. Poregon's
vaho 13 o weasure o@ the ease with which 1t thins

when Pullecl-

+ s o‘e-F:'ned os neaa%\'ve GF- the vato oF- lateval shain

€, to the [ona'\]udinal shain € :

v = — Ew _ _ lotewdl shain
’;T) = Lonsif—udinq] shain

-l = -

(B}

-

= o

{—5?.‘«:00]5 (58 FosiHve nomber ~ 0-3

r‘-—-—.-..n -
| ¥




(Ohat is the tension test data used -Fcrr7

\> 1ts direct vse haPFens N many skhuctural aFP\\‘chons
such os bridges, 'bui)dina.&, ov components which ore
relatively lcma ond slender Ce-a. bruss)

These components undergo tension and/or compression,
very much like the specimen in tension test. The
tension test data ((Young's modulus, Yield skength,
LTS, Poisson’s vaho) *hen glive diveat informaton
on the amount of shress that these companenis can

Qa{!ela handle ‘oe'{:ore O\anaer'oug. s.h‘ainina ox ?a?h.hre.

Q> Tension test date (and similar othece tost data)

Can be vsed to predict what will lnoP\oen when o
comloaneni- of- complex 3D shaPe is loaded n o corrn}:?e;c

way , nothing like in the simple tension test.

Another woy lo Hink: One wmust be able to P-redfc\‘
the world ovwund vs without lna'vin& 4= vesort to
OGTHP\GX‘, ex‘:ensi\re, Hme- cmsumina. material {-es{—[na_ |'
A simple fension test data weuld help vus +o 8@1- some

P'roperh‘es for computer simulahion of complex mechanics



Tension test date 1201' o momber o‘F— metals

Young’s 0.2% Yield Ultimate Tensile
Modulus Strength Strength
E (GPa) (MPa) (MPa)

Ni 200 70 400

Mild steel 203 220 430

Steel (AISI 1144) 210 540 840

Cu 120 60 400

Al 70 40 200

Al Alloy (2014-T651) 73 415 485

% Duchle

Fn aineeﬂ'ng materivals

clacses

|

Tensile test data for some metals (at room temperature)

Brikle

Ve

—> Duchle :

Rrittle materials

can be ca.'rouped into twe byaad

/- P‘QSHC.

can Unclerao 1a-rae Fe‘rma'nenﬂ-

deformations , gl-re-}-chin&, and

neckn‘ng before Pyvacture

These maternals Frocture

voithout Under'ao[hg much

permanent  deformation

— clean breqk .

The LTS

C?F— o bxitHe material is

Same o8 Ffach»\re chress

== ===

Tension f&

a brittle material

o ckin
n] ne g

\ neckina_

Failure of a

ductile material Ph enomenan

BritHe [@-8- 8\ass>

Duckile
Ce-g. Si‘eeo

Avea = absorbed energy

MV



3% Soft materrale

Tension test data -?o*r hadih'oﬂalig non—enaineerina

matexiale can be qui’re O‘fHe’renl' e.q. youbber

— For many u_<;o1"-i:" materials, the eloshe limit, op |, (or the

\/ield skress | 0‘5,) can be very hfah QomPa»red to hovd

er\gineeﬁn% materials, and s close to -?a"lu*re shrecs

elostic
limit

\_0;

. “Soft” material

“Hord” material

7€

— Most of the O=€ curve Por sobt waterials is elaste

and the wmatevial does net underao Pe'rmomen%- deform-

-akon  vpon U‘n1oao\|‘n%.

— Note He

0-& cuvve is non-linear CCu'\—vec:D) vnlike

Prominenk' .S}Ta\‘ah‘t' linear elashc Pozr'h‘on ?or a }—apicq\ ekl



Uniaxial ComPregsion Tests

Mang materiale are uvsed, or oleSl'gneo\ Lox vee, in
compression only . FE.g9. soils and concrete. Hence, these

material are tested in comPfe.qsfm

lgl’ Compression

Testing Machine
Concrete

&
cubes

crushed
cube
—r}’-le '\-:jpical 60- ¢ T‘ESFO'ﬂSQ oF- concrete
(o
A At {Zc\ilure, conecrete

cvuehes Qa-l-asl‘ro]:hl'ca“y

- - M ™ m em -

Failore sghkrain 'l-:jp\’caﬂ\/

ﬁe wiuch less than 1Y%
failore shrairm



Fox many matevials e.q- metals, o comP'ressfon test

will lead te cimilar wesulte as the tension test.

— The \/[e\d s}renj’rh In cempressien will be ApproOX.

Yhe same ot (the ﬂeaq-h’\re cﬁ) the 71‘eld S\T@nﬂ“ﬂ

in tTension

—  Plot ag- brue shkess-clrain cuxves €0r’ both tension
ond compression (absolute values P compression )

would wmore ov less cotnelde

- Plot aF— @naineen‘ng ghress- cshrain cuwrves ‘?crr- both
tension and compression wauld Aifer ( Why ?) b coz-

DF the Ole{—-n Oﬁ enaa‘neerin% 0—-& cuwrve.



Shear Tests

J
Here the wmatrerial is gub\]‘ec}-eo\ T T
b o shear shain Y= E€xy by Y (
P (
O‘bplyfn% o shear shress T = Tuy ; s o
C
q single C/s vesisting sheaar
P 7] <

- |— P )
S\'na\e shear test

I d

dovble C/e *esish‘na ghear
?/1 <« r/lf/J?

B — P

V2 i

Dovble shear test

The shear shess at failore , called shear Sh‘en%'\‘h;

con be %rea'fe'w or lesser than Hhe uvlHmate tensdle

Skress (UTS). The shear yfe\c‘ .s\*renjpn 12 however

0-5- 035 Hmes the tensile yield s}rena}-h.

Th the linear small- stvain vegion , the shear chress woill

be proportional to the shear shrain; He conctant of-

PTOFOT‘HOT\Q\”H is called shear wmodulus , &

Ga= T
Y



Cy che Tesks

C'yclfc_ loao\fna occurs on ro{'ah'na machines, shuctures
Qulo)'ec-l: o vibraton such as wind turbines, Tailuoay/\"oaca
vehicles | aevospace shuctures, and even tocle vsed in the

mananchJ'n'na processes.

In many cases, Lailure (o Prad'u-re> of oo material may
net haFPen in o sinale aFPl{eaHon oF— ]mdfng , but {F
can HaPPen on rePea‘l‘@d application o@- \oadfna and 'relaoding

e-ca. You will see that eleckrical maintenonce werkers cf'l:en

break (or facture) a wire by repeated bending in o

back and -‘Porl'h —Fo\shfoq. %_’)

~
“

Anﬂthina ymove bock and -Fo'rwa‘r‘c’ (s likely to be subjected to

Hhis l'ensian/mm]o'ressu'm—l-ﬂpe C‘Sclfc laodina.

Consider ¥Hhe above {21‘3141-93 where the shkress at a Poin?-

in the ’oOdg variea with Yime.



Experimenh sheao +hat the a\l-erna-h'na shress cam]:anenl'
Ga is the wost imp. -Foc{-or in o\e’c@rminin% the # of

cycles of load o material can withstand before Procture.

O is called Hhe mean gshess and is less ?m]D- esl:em’ally

f &. <o CcamF-ressive>.

FATIGUE s the process of fractore under cyelie food, well

below G (VTS) or even Cy (yie\d).

Tracture 'may occur after
— o few cycles = low-cycle ‘?a’h'gue, ovr
— ofter %ausqnds/miﬂians orF cYcles = hia\n-cycle gah'aue

Plot oF alternating shress 03 (8) ve. # of cycles to failuve (N)

Steel

Enduvance limit

Alte mahng shess (07)
A

Vv

Cycles to failure (N)

Alee called S-N curve



How is an S-N Curve Generated?

Creating an S-N curve involves fatigue testing, where a material sample is subjected to
cyclic loading under controlled conditions. The process includes:

1. Test Setup:
o A specimen is mounted in a fatigue testing machine, such as a servo-hydraulic
system.
o Cyclic loads are applied, typically as sinusoidal waveforms, at a set frequency.
2. Stress Amplitude Variations:
o The material is tested at different stress levels, and the number of cycles to failure
is recorded for each.
3. Plotting the Data:
o Stress amplitudes are plotted on the vertical axis (S), and the number of cycles to
failure (N) is plotted on a logarithmic horizontal axis.

The resulting curve shows how a material’s fatigue life decreases as stress
amplitude increases.

https://tactun.com/fatigue-testing-s-n-curves-and-their-
significance/



Tdealized mmaterial constitutive velabons

The responce of veal matevials 1to various Ioao\ina condihons

was discussed in previous lectures. Now comes the tacsk c)'i

c'reai-ing mathemahcal wodele which can P-reclfci- Hhis vespoense

We will vow characterize wmatevial Tespens es o Tdeal modlels

-
. Ria{o\ material — no skain 'reaqn:.“ess

O‘g shress

vsefut for smdyfng gross motions

Y

! inear elashec G 1

¢ Elastic wmaterval

N Non-linear elastc //

v

~ loadin8 and uﬂloadih% pathe are

Same - a
'B‘ulabe'\-:

~ No Pe-rmamen{- (or plastic de{—ormahm) / / soft hesies

v

~ bodg. returns %o Oﬂ‘ainal shape upon e

unloadu‘hg
vseful for desl'anina bor eloatic deformahone

V)
« Viscoelashe watevial CSh-a'\ n-vate dependerﬂ-) / enegy

lest
~ “’a"““z and un\oadl'na curves den't / (os heat)

N

coineide , but form a“H-y.c’cersi; Ioalo > e
L.OOd;na £ Unloadina

in tension test

~ slress depencls vpon shain -vate de
dt



Use'ﬁkl -Fo'r o\e:ijnina salid meterials with

“Auid-lIike” characterishes tolHA small

N
rd

deformahons
€

Different vates of-
shre l'china,

/ E'Qghc = P@r{“@cHy 6 1T
» Elasto-plashe material plashc _—
Elasto-plashic wrth ] " )
!
Shrain karolem'ng_ d .
e

vseful for desfsnina bodies toith

lafae de(-’ormah‘cm_v. (esith ?ermqnew\' S\-ra‘m)

. ViseoPlas-Hc materia| (stain smate clependenl->

~ o combinaton o? e[as%o-]:)(ash'c: 0 visco-elash'e wmadels

e Pa'r'h'culaﬂy, Plash‘o_'l"é e Shrain-rale (3_?_) dependent

useful for studly o? materials at hr‘g’h temperatures

eg- a.sphal t



Continuum Models and Micromechanics

The models mentioned in the previous section are continuum models. What this means
is explained in what follows.

Stress and Scale

In the definition of the traction vector, it was assumed that the ratio of force over area
would reach some definite limit as the area AS of the surface upon which the force AF
acts was shrunk to zero. This issue can be explored further by considering Fig. 1.1.
Assume first that the plane upon which the force acts is fairly large; it is then shrunk and
the ratio F /S tracked. A schematic of this ratio is shown in Fig. 1.2. At first (to the
right of Fig. 1.2) the ratio F /S undergoes change, assuming the stress to vary within the
material, as it invariably will if the material is loaded in some complex way. Eventually
the plane will be so small that the ratio changes very little, perhaps with some small
variability . If the plane is allowed to get too small, however, down below some
distance h* say and down towards the atomic level, where one might encounter
“intermolecular space”, there will be large changes in the ratio and the whole concept of a
force acing on a single surface breaks down.

Figure 1.1: A force acting on an internal surface; allowing the plane on which the
force acts to get progressively smaller

In a continuum model, it is assumed that the ratio F /S follows the dotted path shown in
Fig. 1.2; a definite limit is reached as the plane shrinks to zero size. It should be kept in
mind that the traction in a real material should be evaluated through

t= lim 25 (1.1)

AS—>(h*)?2



where h* is some minimum dimension below which there is no acceptable limit. On the
other hand, it is necessary to take the limit to zero in the mathematical modelling of
materials since that is the basis of calculus.

F
S
getting closer to the
i Hpoint11
continuum h*
approximation\<—> —
/ \
/ more or less constant F/S
Molecular level — with some variability € F/S changing as one moves

away from “point”

Figure 1.2: the change in traction as the plane upon which a force acts is reduced in
size

In a continuum model, then, there is a minimum sized element one can consider, say of
size AV =(h*)>. When one talks about the stress on this element, the mass of this
element, the density, velocity and acceleration of this element, one means the average of
these quantities throughout or over the surface of the element — the discrete atomic
structure within the element is ignored and is averaged out, or “smeared” out, into a
continuum element.

The continuum element is also called a representative volume element (RVE), an
element of material large enough for the heterogeneities to be replaced by homogenised
mean values of their properties. The order of the dimensions of RVE’s for some
common engineering materials would be approximately (see the metal example which

follows)
Metal: 0.1mm
Polymers/composites: 1mm
Wood: 10mm
Concrete: 100mm

One does not have any information about what is happening inside the continuum
element — it is like a “black box”. The scale of the element (and higher) is called the



macroscale — continuum mechanics is mechanics on the macroscale. The scale of
entities within the element is termed the microscale — continuum models cannot give any
information about what happens on the microscale.

Example: Metal

Metal, from a distance, appears fairly uniform. With the help of a microscope, however,
it will be seen to consist of many individual grains of metal. For example, the metal
shown in Fig. 5.4.3 has grains roughly 0.05mm across, and each one has very individual
properties (the crystals in each grain are aligned in different directions).

~4 Sy _ P

P Y e ¥ T gt e

""x - LR B NG 2
N A 2 i

0.1 mm iy

Figure 1.3: metal grains

If one is interested in the gross deformation of a moderately sized component of this
metal, it would be sufficient to consider deformations that are averaged over volumes
which are large compared to individual grains, but small compared to the whole
component. A minimum dimension of, say, h" =0.5mm for the metal of Fig. 1.3 would
seem to suffice, and this would be the macro/micro-scale boundary, with a minimum
surface area of dimension (h")? for the definition of stress.

When one measures physical properties of the metal “at a point”, for example the density,
one need only measure an average quantity over an element of the order, say, (0.5mm)3or
higher. It is not necessary to consider the individual grains of metal — these are inside the
“black box”. The model will return valuable information about the deformation of the
gross material, but it will not be able to furnish any information about movement of
individual grains.

It was shown how to evaluate the Young’s Modulus and other properties of a metal. The
test specimens used for such tests are vastly larger than the continuum elements discussed
above. Thus the test data is perfectly adequate to describe the response of the metal, on
the macroscale.

What if the response of individual grains to applied loads is required? In that case a
model would have to be constructed which accounted for the different mechanical
properties of each grain. The metal could no longer be considered to be a uniform



material, but a complex one with many individual grains, each with different properties
and orientation. The macro/micro boundary could be set at about h™ =0.1um. There are

now two problems which need to be dealt with: (1) experiments such as the tensile test
would have to be conducted on specimens much smaller than the grain size in order to
provide data for any mathematical model, and (2) the mathematical model will be more
complex and difficult to solve.

Micromechanical Models

Consider the schematic of a continuum model shown in Fig. 1.4 below. One can
determine the material’s properties, such as the Young’s modulus E, through
experimentation, and the resulting mathematical continuum model can be used to make
predictions about the material’s response. With the improved power of computers,
especially since the 1990s, it has now become possible to complement continuum models
with micromechanical models. These models take into account more fine detail of the
material’s structure (for example of the individual grains of the metal discussed earlier).
Usually, one will have a micromechanical model of a small (typical) RVE of material.
This then provides information regarding the properties of the RVE to be included in a
continuum model (rather than having a micromechanical model of the complete material,
which is in most cases still not practical). The means by which the properties at the
micro scale are averaged (for example into a “smeared out” single E value) and passed
“up” to the continuum model is through homogenization theory. Such micromechanical
models can provide further insight into material behavior than the simpler continuum
model.

continuum
element

macro-to-
micro scale

Figure 1.4: continuum model and micromechanical model
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