MINOR APL108: Mechanics of Solids Fall 2025

Total marks: 20 Total time: 2 hours

Answers without clear motivation/reasoning and handwriting will get zero marks!

1. [2 marks] At point A of a beam (shown below), the components of the stress tensor expressed
in e; — ey —e3 CSYS are as follows: 011, T21, 731 are non-zero and o2 = 033 = 732 = 0.
n is the normal to the lateral surface at A with a < 1.
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Find the error in the satisfaction of the traction-free (i.e., zero traction) boundary condition
at A for the beam subjected to bending moment, axial force, and shear force as shown in the
diagram.

2. [4 marks| Consider a closed-end thin-walled cylindrical shell (like a capsule) with internal
radius R and thickness ¢ subjected to a uniform internal pressure p. Show that the principal
stresses in the cylinder wall (not the end cap walls), in cylindrical coordinates (e, — ey — ¢€,),
are given by:
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What is the maximum shear stress in the 6 — z plane? Is it equal to the absolute maximum
shear stress?
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3. [4 marks| The deviatoric stress state is used in theories of failure since it is a measure of
those stresses that produce only distortional (and no volume) changes in a body. Consider
the state of stress (in MPa):
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(a) Determine the deviatoric stress matrix, [g 4 } (1 mark)
—daev

(b) Compute the stress invariants of the stress tensor ¢ and those of deviatoric stress tensor
T 4op (1 mark)
(¢) Compute the principal directions of the deviatoric stress tensor [g dev} and the stress

tensor {g}. How are they related?
How are the absolute maximum shear stresses related in both cases? (2 marks)

4. [4 marks] Consider a cantilever beam (with one end free and another end fixed) with a
vertical load P applied to the free end of the beam. Take origin at the free end. At the fixed
end, the displacements and the slope are zero, i.e., u,(L,0) = u,(L,0) = %(L, 0) =0. The
corresponding strain field at any point in the beam is given by:
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v,E,I,G, L, h,b, P are known constants.
Check if the strain field is compatible or not. Using the given information, find out the
displacement fields u,(x,y) and u,(z,y).

5. [3 marks] A thin rectangular sheet is strained with uniform strain components: €, = 0.001,
€yy = —0.001, 75, = 0.001. All other strain components are zero implying it is a plane strain
condition.

(a) Draw Mohr’s circle for this case. (1 mark)
(

)
b) How much will be the percentage change in the area of the thin sheet? (0.5 mark)
(c) Which line elements undergo maximum and minimum normal strain? (1 mark)

)

(d) What will be the orientation of the two perpendicular lines in the plane of the sheet
that undergo maximum angle change between them? (0.5 mark)

6. [3 marks] Show that T" = Zf’ T (n-e) = Zf’ I% (n-¢&;), i.e, the formula is independent of
what three planes are chosen to determine 7!
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Q A thin rectangular sheet is strained with uniform strain components: €,, = 0.001,
€yy = —0.001, z%,ﬂl_ﬂﬂl All other strain components are zero implying it is a

plane strain condition.

(i) Draw Mohr’s circle for this case.

(ii) How much will be the percentage change in the area of thin sheet?

(iii) Which line elements undergo maximum and minimum longitudinal /normal
strain?

(iv) What will be the orientation of the two perpendicular lines in the plane of
sheet which undergo maximum angle change between them?

Solution:
= 0.001, €, = 0.001, v, = 0.001, others are all zero!

A Y\ , maxshear
2 ( plane
\ -
|
/

——. max shear
plane

(i) The Mohr’s circle is drawn above.

tan 20 = Yay/2
(€ze — €yy) /2
0.0005

= 0.001

Center of the circle = Cax T Cyy _ i’ @t
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(ii) Percentage change in area of the sheet = (€, + €,,) x 100 = 0%
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(iii) To find line elements undergoing max. and min. longitudinal strain (principal strains),
we use the Mohr’s circle. The principal strains are:

. M+R = R: the line element that undergoes maximum longitudinal strain

?d‘t lie along the normal of maximum principal strain plane. Its normal is oriented at

1
) 20 = tan~! (2) clockwise from X-axis in Mohr’s cirle
“9{ e \L& 1 _ @

1
o ¥ e = 0= 3 tan ™ <2> anti-clockwise from X-axis physically. ]

3

— R = —R,; the line element that undergoes minimum longitudinal

e
W.s t ¢ strain_lie along the normal of minimum principal strain plane. Its normal is

N oriented at
(5‘0 % .\v(\cy(‘e T +20=m+tan"? <2> clockwise from X-axis in Mohr’s cirle
W ae 1 1
O L}t’"\' ) = +0 = z + ~tan~* () anti-clockwise from X-axis physically.]
e . 2 2 2 2
<
\ko\‘\ (iv) Maximum shear strain will occur between those two line elements which correspond

to top and bottom points in the circle. The corresponding directions are:

o First line element oriented along
(;T — 29> anti-clockwise from X-axis in Mohr’s circle
= (Z — 9) clockwise from X-axis physically ]
e Second line element oriented along

(?nr — 20) anti-clockwise from X-axis in Mohr’s circle

2 Y
3T . . .
= <4 — 9) clockwise from X-axis physically J .
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