Tutorial 3: Stress tensor and its transformation

APL 104 - 2022 (Solid Mechanics)

Q1. A tapered beam is clamped at one end and subjected to transverse load (along \underline{e}_2) at the other end. Think of a point A on the top slanted surface of the beam. What can you say about the state of stress at point A?

Suppose that we know $\hat{\sigma}_{11}$ at t A. Can we find the components $\tau_{21}, \sigma_{11}, \hat{\tau}_{21}$ at pt A? Assume that traction has no components along \underline{e}_3 at any point in the body.

Q2. The state of stress at a point is given by $\begin{bmatrix} \underline{\sigma} \end{bmatrix} = \begin{bmatrix} \sigma_{11} & 2 & 1 \\ 2 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$.

What should be σ_{11} such that there is at least one plane at that point on which the traction vanishes? Also, find the corresponding plane normal.

Q3. Suppose the stress matrix at a point equals $\left[\underline{\underline{\sigma}}\right] = \begin{bmatrix} a & 0 & d \\ 0 & b & e \\ d & e & c \end{bmatrix}$. Determine the plane having its normal perpendicular to z-axis such the stress stress

Determine the plane having its normal perpendicular to z-axis such that the traction on that plane is tangential to the plane. **Q4.** Consider a sphere of radius R subjected to diametrical compression as shown in the figure. Let σ_{rr} , $\sigma_{\theta\theta}$, and $\sigma_{\phi\phi}$ be the normal stresses and $\tau_{r\theta}$, $\tau_{\theta\phi}$ and $\tau_{\phi r}$ the shear stresses at any point in the sphere. At point P(x, y, z) on the sphere's surface and lying in the y - z plane, determine the rectangular normal stress components σ_{xx} , σ_{yy} and σ_{zz} in terms of the spherical stress components.

