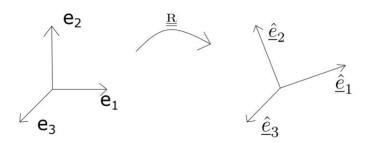
Tutorial 1: Mathematical Preliminaries

APL 104 - 2022 (Solid Mechanics)

- **Q1.** Show that $\underline{a} \cdot \left(\underline{\underline{A}} \ \underline{\underline{b}}\right) = \left(\underline{\underline{\underline{A}}}^T \underline{\underline{a}}\right) \cdot \underline{\underline{b}}$
- **Q2**. There exists a tensor $\underline{\underline{A}}$ such that $\underline{\underline{\underline{A}}} \cdot \underline{\underline{e}}_1 = \underline{\underline{a}}, \ \underline{\underline{\underline{A}}} \cdot \underline{\underline{e}}_2 = \underline{\underline{b}}, \ \underline{\underline{\underline{A}}} \cdot \underline{\underline{e}}_3 = \underline{\underline{c}}$. What will be the matrix form of $\underline{\underline{\underline{A}}}$ in $(\underline{\underline{e}}_1, \underline{\underline{e}}_2, \underline{\underline{e}}_3)$ coordinate system?
- Q3. Show that
 - (a) $(\underline{a} \otimes \underline{b}) \underline{\underline{C}} = \underline{a} \otimes \left(\underline{\underline{C}}^T \underline{b}\right)$ (b) $\underline{\underline{C}} (\underline{a} \otimes \underline{b}) = \left(\underline{\underline{C}} \underline{a}\right) \otimes \underline{b}$
- **Q4**. Given an anti-symmetric tensor $\underline{\underline{A}}$, prove that $(\underline{\underline{A}} \underline{x}) \cdot \underline{x} = 0 \quad \forall \underline{x}$
- **Q5.** In class we learnt that a unique rotation tensor $\underline{\underline{R}}$ can be associated with transforming a set of orthonormal triad into another say $(\underline{e}_1, \underline{e}_2, \underline{e}_3) \rightarrow (\underline{\hat{e}}_1, \underline{\hat{e}}_2, \underline{\hat{e}}_3)$. In particular, we discussed a specific case where $(\underline{\hat{e}}_1, \underline{\hat{e}}_2, \underline{\hat{e}}_3)$ is obtained by rotation of $(\underline{e}_1, \underline{e}_2, \underline{e}_3)$ about \underline{e}_3 axis by angle θ . Find the matrix form of this rotation tensor $\underline{\underline{R}}$ in $(\underline{\hat{e}}_1, \underline{\hat{e}}_2, \underline{\hat{e}}_3)$ coordinate system.



Q6. Extra questions for practice:

- If \underline{a} and \underline{b} are two vectors, show that their dot product $\underline{a} \cdot \underline{b}$ remain the same in different coordinate system (say $(\underline{e}_1, \underline{e}_2, \underline{e}_3)$ and $(\underline{\hat{e}}_1, \underline{\hat{e}}_2, \underline{\hat{e}}_3)$)
- Prove that $\left[(\underline{u} \cdot \underline{a}) \left(\underline{\underline{A}}^T \underline{b} \right) \right] \cdot \underline{n} = \underline{a} \cdot \left[\left(\underline{u} \otimes \underline{\underline{A}} \underline{n} \right) \right] \underline{b}$
- If \underline{A} is a symmetric tensor and \underline{B} is an anti-symmetric tensor, then show that

$$\underline{A}:\underline{B}=0$$