Tutorial 6 (Part A)

A thin homogeneous rectangular plate, as shown, rotates about a diagonal axis with angular velocity $\underline{\omega}$ and angular acceleration $\underline{\dot{\omega}}$.

- (i) Determine the total moment \underline{M}_C exerted on the plate about the COM $C, \{ using \}$ the coordinate system $\underline{\hat{e}}'_1, \underline{\hat{e}}'_2, \underline{\hat{e}}'_3$ in terms of the rotational motion $\underline{\omega}$ and $\underline{\dot{\omega}}$.
- (ii) Find the relation between a drive torque $\underline{T} = T\hat{\underline{e}}'_3$ (applied about $\hat{\underline{e}}'_3$ -axis) to the rotational motion. Also, determine the bearing support reaction forces (assuming bearing support reaction couples are zero).

Q1. ______, ____, elate the reaction forces and moments of couples at A and B to the the motion of the shaft. Angular velocity of the shaft is constant.

(Cype II: problem) Set 6B:Q2

The uniform thin 2.5-kg disk spins at a constant rate $\omega_2 = 6$ rad/s about an axis held by a housing attached to a horizontal rod that rotates at the constant rate $\omega_1 = 3$ rad/s. Determine the couple which force and moment of couple acting on the rod at A. Ao is mussless) AD = Inv (at this instant)

F = 24.5 N vertically up = -0.225 Nmg + 24.5 Nmg

 $\mathcal{O}_{\mathcal{A}}(\hat{e}) \mathcal{A}_{2}(\hat{e}) \mathcal{A}_{3}(\hat{e}_{3})$ is fixed to the dist.